Lecture 9
Pre-attentive attributes,
gestalt, illusions

Data visualization - 1-DAV-105
Lecture by Brona Brejova

Acknowledgement: materials inspired by lectures from Martina Batorova in 2021


https://bbrejova.github.io/viz/
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Human visual perception ‘ .

What happens when we look at the figure? e s

e The light from the screen / projector hits the retinas of our eyes
e Photoreceptor cells transduce (convert) this signal into nerve impulses
e In the brain:

o detection of basic features

o recognition of patterns

o interpretation, assignment of meaning
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Human visual perception ‘ .

What happens when we look at the figure? e s

e The light from the screen / projector hits the retinas of our eyes
e Photoreceptor cells transduce (convert) this signal into nerve impulses
e In the brain:

o detection of basic features

o recognition of patterns

o interpretation, assignment of meaning

Today: Detection of features and patterns, use for visualization

Note: Human visual perception is very good for detecting motion (danger/prey).
This is relevant for animated visualization, but not covered today.



In which period of time was life expectancy higher in
Slovakia than in Portugal?

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
Country
Slovak Republic 379 409 439 499 540 609 703 69.7 705 710 735 756 76.9

Portugal 356 356 356 409 515 0586 643 672 715 741 767 80.0 81.0



In which period of time was life expectancy higher in
Slovakia than in Portugal?
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How many copies of digit six do you see?

1014508
2530653
6821550
3702967
38622988



What about now?

1014508
2530653
6821550
3702967
8622988



What about Slovakia vs Portugal in this table?

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
Slovakia 379 409 439 499 540 609 703 69.7 705 710 735 756 76.9
Portugal 356 356 356 409 515 586 643 672 715 741 76.7 80.0 81.0



Pre-attentive attributes

e Features of the seen objects detected by our brain very fast

e Prior to and without the need of conscious awareness

e Brain uses them to guide attention / gaze to interesting parts of the scene

e Their correct use allows fast and effortless understanding of our visualizations
Next:

Examples of important pre-attentive attributes (form, color, position)
following Few 2009

See also https://www.csc2.ncsu.edu/faculty/healey/PP/



https://www.csc2.ncsu.edu/faculty/healey/PP/

Pre-attentive attributes: form

We can quickly distinguish one object that differs from the rest

Length Width Orientation



Pre-attentive attributes: form

We can quickly distinguish one object that differs from the rest
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Pre-attentive attributes: color

We can quickly distinguish one object that differs from the rest

Hue Lightness



Pre-attentive attributes: position

2D



Hierarchy of graph elements

Cleveland, McGill 1985

Experiments with volunteers of how well they judge ratios between values
graphically encoded in different ways.

Not all pre-attentive attributes are equally good for quantitative reasoning.


https://courses.ischool.berkeley.edu/i247/f05/readings/Cleveland_GraphicalPerception_Science85.pdf

Prefer elements on the left side for accuracy

Length (aligned) Length Slope Area Volume Color hue
| <~ >
— Angle Color intensity
/ B
-l y
Accurate Generic

Based on https://paldhous.qithub.io/ucb/2015/dataviz/week2.htm



https://paldhous.github.io/ucb/2015/dataviz/week2.htm

The same data with length / area / color / angle

10,20,17



Chart selection tools

In lecture 3 and later, we have seen many types of graphs
Some websites list them based on variable type and purpose for easier selection:

e https://www.data-to-viz.com/
e https://extremepresentation.typepad.com/blog/2006/09/choosing a good.html

Let us look at some the suggestions from the first website in terms of the hierarchy
of graph elements


https://www.data-to-viz.com/
https://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html

From parts to the whole: gestalt

Gestalt psychology (early 20th century, Austria and Germany)
Gestalt means pattern

Our brains group individual shapes into larger patterns

The brain favors speed to precision (illusions, errors)

It also favors symmetry and simplicity

Several gestalt principles are relevant in data visualization

N a

https://commons.wikimedia.org/wiki/File:Reification.svg



Principle of proximity

e Objects located close to each other are perceived as a group
e Good use of space in plots / tables / presentations can improve readability
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https://commons.wikimedia.org/wiki/File:Gestalt_proximity.svg


https://commons.wikimedia.org/wiki/File:Gestalt_proximity.svg

Principle of similarity
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https://commons.wikimedia.org/wiki/File:Gestalt _similarity.svg

Similar objects are perceived as a group even of not close by
Various plots use color / shape to distinguish groups
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https://commons.wikimedia.org/wiki/File:Gestalt_similarity.svg

How are both principles used here?
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Life expectancy (years)

Example

separate legend vs marking lines with text in the same color

- using principles of proximity and similarity
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Principle of connection

e Connected objects are perceived to form a group
e Stronger than proximity and similarity
e Consider carefully when to use line graph vs. scatter plot
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Principle of enclosure

e Enclosed objects are perceived as a member of the group
e Stronger than proximity and similarity
e Useful for highlighting in plots; little is enough (e.g. light background)
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Principle of closure

e Qur brain fills gaps in figures, connects interrupted lines
e Useful / dangerous when interruptions by design
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https://commons.wikimedia.org/wiki/File:Gestalt closure.svg



https://commons.wikimedia.org/wiki/File:Gestalt_closure.svg

Principle of continuity

Smooth lines are easier to follow than angular and sharp
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Frames not necessary, gestalt principles fills them in

(principles of closure and continuity)
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lllusions

e Fast visual processing leads to errors
e These are demonstrated by many optical illusions
e Beware not to create illusions in your plots



Muller-Lyer and Ebbinghaus illusions

lllusions: length and size “
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https://commons.wikimedia.org/wiki/File:M%C3%BCller-Lyer illusion.sv
https://commons.wikimedia.ora/wiki/File:Mond-vergleich.svg



https://commons.wikimedia.org/wiki/File:M%C3%BCller-Lyer_illusion.svg
https://commons.wikimedia.org/wiki/File:Mond-vergleich.svg

lllusions: length, perspective, spatial compensation

A0\

N 7

https://commons.wikimedia.ora/wiki/File:Mueller lyer.svg
https://commons.wikimedia.ora/wiki/File:Ponzo illusion.qif



https://commons.wikimedia.org/wiki/File:Mueller_lyer.svg
https://commons.wikimedia.org/wiki/File:Ponzo_illusion.gif

lllusions: color

https://en.wikipedia.org/wiki/File:Checker shadow illusion.svg
https://commons.wikimedia.org/wiki/File:Grey square optical illusion proof2.svg



https://en.wikipedia.org/wiki/File:Checker_shadow_illusion.svg
https://commons.wikimedia.org/wiki/File:Grey_square_optical_illusion_proof2.svg

lllusions: color

Mach bands: when bands touch, the edge effect exaggerates their difference




lllusions: color
In heatmap the perception of colors influenced by their surroundings

a = np.array(/[

119, 18, 18; ©; @, 6; 9];

. 119, 37, 18; ©; @, 6, 9i;
[10; 18, 18, ©;, 6, 6, 9]

[ @ ©; 6, 8, 6, 0, 9];

e, o, 0, 0, 40, 40, 40],

e, o, o, 0, 40, 37, 40],

e, o, 0, 0, 40, 40, 40],

)

pal = sns.color _palette("dark:white r", as cmap=True)
axes = sns.heatmap(data=a, square=True,

cmap=pal, cbar=False)

”!—lr—1r—|r—|

axes.axis('off"')



Working memory

Stacked bars

e Iconic memory: extremely short-term 80 :
(<1s), simple pre-attentive processing - S sl
e Visual short-term memory: many — -
seconds, but very small capacity (only il T Casthela 6 Paclic
3-5 items) 50 - ;Ztritnh/:r:nne;c:a& Caribbean
e Long-term memory: store and recall £ &
selected information . -
Since working memory is small, looking at a 20 -

plot with many colors requires back-and-forth
between legend and plot
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Chart and table junk

Chart junk: elements of plots not necessary to convey information
They unhelpfully catch our attention through pre-attentive attributes
Most visualization can be improved by simplification

Some redundancy can be useful

Nice visualizations of the simplification process:

e https://www.darkhorseanalytics.com/blog/data-looks-better-naked
e Also tables, maps and the unpopular pie charts



https://www.darkhorseanalytics.com/blog/data-looks-better-naked
https://www.darkhorseanalytics.com/blog/clear-off-the-table
https://www.darkhorseanalytics.com/blog/data-looks-better-naked-maps-edition
https://www.darkhorseanalytics.com/blog/salvaging-the-pie

Summary

e Pre-attentive attributes are processed by our brains very fast

e Choosing the right attributes from the hierarchy allows accurate
quantification

e Principles of gestalt describe how the brain connects part to the whole

e The brain can also make errors in visual processing as seen in illusions

e Removing chart junk concentrates our attention to the important elements



Additional sources

Utilizing Gestalt Principles to Improve Your Data Visualization Design
http://daydreamingnumbers.com/blog/gestalt-laws-data-visualization/
Albert Cairo: The Functional Art

C.N. Knaflic: Storytelling with Data

Stephen Few: Now You See it



https://vizzendata.com/2020/07/06/utilizing-gestalt-principles-to-improve-your-data-visualization-design/
http://daydreamingnumbers.com/blog/gestalt-laws-data-visualization/

Visualizing text data



Visualizing text data

Working with natural text is difficult

e Complex grammar, ambiguous meaning, synonyms, etc.

e Lot of machine learning research

e Nonetheless sometimes simple statistics on frequencies of words or groups of
words can be useful

e Usually we remove stop words (frequent words such as "and", "is"...) and
apply lemmatization (convert inflected words to canonical form, such as
"seen" -> "see")



Word clouds

https://commons.wikimedia.o

ra/wiki/File:State of the uni
on_word clouds.png

State of the Union Address, 2002 vs. 2011
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https://commons.wikimedia.org/wiki/File:State_of_the_union_word_clouds.png
https://commons.wikimedia.org/wiki/File:State_of_the_union_word_clouds.png
https://commons.wikimedia.org/wiki/File:State_of_the_union_word_clouds.png

Word clouds

Display the most common words from a text

Size of words grows with frequency

Arranged to be visually pleasing

Not the best option for understanding/comparing word frequencies

You can also display word frequencies using bar graphs and other plot types



https://getthematic.com/insights/word-clouds-harm-insights/

Tag cloud heim el .
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http://ieeexplore.ieee.org/abstract/document/8320795

Word tree

Shows with words most often
follow or precede a given word
using a hierarchy

Text: Introduction to The
Origin of Species by Charles
Darwin, 1859, 1872

Figure source
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https://en.wikisource.org/wiki/The_Origin_of_Species_(1872)/Introduction
https://www.jasondavies.com/wordtree/?source=1c717cae76b39ad5c0078b70ca918c32&prefix=species&reverse=1&phrase-line=0

Phrase nets

Phrases of type "X of Y", X connected to Y in a graph; source van Ham et al 2009
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https://ieeexplore.ieee.org/iel5/2945/5290686/05290726.pdf

Text visualization: additional sources

Courses Data management (2L), Principles of Data Science (32)

Text visualization browser https://textvis.Inu.se/

Lecture from Univ. of Washington

Drawing Elena Ferrante's Profile: Finding out who is Elena Ferrante,
bestselling Italian author (My Brilliant Friend) by comparing word frequencies
etc. (see e.g. page 100)



https://textvis.lnu.se/
https://courses.cs.washington.edu/courses/cse512/15sp/lectures/CSE512-Text.pdf
https://www.research.unipd.it/retrieve/e14fb26a-f8e6-3de1-e053-1705fe0ac030/2018_Tuzzi_Cortelazzo_PUP_Ferrante_9788869381300.pdf

