Lecture 8

Visual perception and colors
 Data visualization • 1-DAV-105
 Lecture by Broňa Brejová

Acknowledgement: materials inspired by lectures from Martina Bátorová in 2021

Aside: data analysis / visualization project phases

- Obtaining data
- Data preprocessing, checking, cleaning
- Exploratory analysis (many tables and graphs for your use)
- Formation of hypotheses
- Testing hypotheses (careful reanalysis, new data, other sources)
- Explanatory visualizations for the final report / presentation (best views selected for the audience)

More in two weeks

Why talk about visual perception in visualization?

In which period of time was life expectancy higher in Slovakia than in Portugal?

	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000	2010	2020	
Country														
Slovak Republic	37.9	40.9	43.9	49.9	54.0	60.9	70.3	69.7	70.5	71.0	73.5	75.6	76.9	
Portugal	35.6	35.6	35.6	40.9	51.5	58.6	64.3	67.2	71.5	74.1	76.7	80.0	81.0	

In which period of time was life expectancy higher in Slovakia than in Portugal?

Visual brain, table vs. graph

We "read" tables, verbal processing
We "see" plots, visual processing
Visual processing is very parallel and fast, evolved to spot predators
In which situations is a table preferable to a plot?

Human visual perception

What happens when we look at the figure below?

Human visual perception

Human visual perception

What happens when we look at the figure?

- The light from the screen / projector hits the retinas of our eyes
- Photoreceptor cells transduce (convert) this signal into nerve impulses
- In the brain:
- detection of basic features
- recognition of patterns
- interpretation, assignment of meaning

Today: Focus on the light, eyes and colors, later stages next week

Light

Visible light as a part of electromagnetic spectrum

\leftarrow Increasing frequency

Sunlight is a mixture of different wavelengths

https://commons.wikimedia.org/wiki/File:Solar spectrum en.svg https://commons.wikimedia.org/wiki/File:WhereRainbowRises.jpg

Human eye

Human eye

Retina (sietnica): light-sensitive layer

Lens (šošovka): focus light to retina
Pupil (zrenica): hole in iris (dúhovka) where light enters the eye, its size regulated by the amount of light

[^0]
Photoreceptor cells in the retina

Rods (tyčinky): more sensitive to low light, not used for color vision

Cones (čapíky): color vision, three different types sensitive to different wavelengths (blue, green, red)

Foveal vs peripheral vision

Peripheral system for general holistic impression of the situation. Foveal system for high quality details.

Fovea: central zone with many cones, sharp color vision, only about 1-2 ${ }^{\circ}$

Peripheral vision: mostly rods, fast monochrome vision

The eyes make fast movements (saccades) between fixations on different points of interest to create a composite image

Colors and color spaces

Metamers: light with different spectra that appear the same (to typical humans)

[^1]
Color spaces, LMS

A color space is an organization of colors.
Our eye projects a full light spectrum into three values: response of the three types of cones.

S (short), M (medium), L (large) wavelength
LMS color space uses these three values to represent a color.

Metameric colors have the same values.
Derived models, e.g. CIE with better properties.
https://commons.wikimedia.org/wiki/File:Solar spectrum en.svg https://commons.wikimedia.org/wiki/File:Cones SMJ2 E.svg

Do you know some other color spaces?

Additive color models, RGB

Monitors, projectors etc.
Component lights in primary colors, other colors mixtures of these (adding up light).

White can be achieved by combining colors.
RGB uses red, green, blue as primary (corresponds to LMS peaks).

The gamut is the set of colors representable by a device, usually a subset of the visible spectrum.

Colors in RGB space (RGB cube)

RGB is often used to specify colors.
Each coordinate e.g. a real number between 0 and 1 or integer between 0 and 255.
Also hexadecimal notation, e.g. \#ff0000 is pure red.
Greytones on the main diagonal ($\mathrm{x}, \mathrm{x}, \mathrm{x}$).

HSL and HSV color models

Transformations of RGB model with more intuitive coordinates.
Useful for color pickers, color palettes, image transformations etc.
Hue, saturation, lightness / hue, saturation, value.

https://commons.wikimedia.org/wiki/File:HSL color solid cylinder saturation gray.png https://commons.wikimedia.org/wiki/File:HSV color solid cylinder saturation gray.png

Subtractive models, pigments

Pigments block part of the light spectrum.
Adding more pigments blocks (subtracts) more light.

Black can be achieved by combining colors.

Example: CMY(K) color model used in printing.

CMY(K) color model

Primary colors cyan, magenta and yellow

- cyan absorbs red
- magenta absorbs green
- yellow absorbs blue

Black (K) added because

- it is cheaper
- it hides artifacts in dark colors

Conversion from RGB to CMYK is difficult, device-dependent.
https://commons.wikimedia.org/wiki/File:Barns grand tetons.jpg
 https://commons.wikimedia.org/wiki/File:CMY separation \%E2\%80\%93 no black.jpg https://commons.wikimedia.org/wiki/File:CMYK separation \%E2\%80\%93 maximum black.jpg

Color wheel, RYB model

Subtractive model developed in art, for mixing pigments

Dates back to 17th century
Primary colors red, yellow, blue
Secondary orange, green, purple (each a mix of two primaries)

Tint, tone, shade - more painter terminology

Examples of color schemes

Monochromatic: tints / tones / shades of the same hue
Complementary: 2 colors opposite on the color wheel (e.g. orange and blue)

Split complementary: color and 2 neighbors of its complement (e.g. orange and blue-green, blue-purple)

Analogous: 3-5 adjacent colors on the wheel
Each of these can be desaturated (tints / tones / shades)
See also https://color.adobe.com/create/color-wheel

Color and meaning, cultural differences

Colors often symbolize different things both within and between cultures:

- for example red: blood, love, passion, life, anger, violence, danger, emergency, speed, heat ...
- China: good luck, prosperity vs. Europe: warning
- "in the red" mean losses in English, what about China?
- mourning color is black in Europe, white in the East

Colors in data visualization

Not everybody will be able to see your colors

Color blindness or color vision deficiency
Various forms and causes
Most often genetic red-green color blindness, where L or M opsin gene is mutated (8% of males)

Technical problems

- Projectors often distort colors
https://commons.wikimedia.org/wiki/Fil e:Ishihara 9.svg
- Black-and-white printing

Choose your colors wisely to avoid these problems as much as possible

Color draws attention, use it sparingly

Rely on neutral tones
Use color sparingly, avoid unnecessary colors
Colors are great for highlighting points of interest

Qualitative palettes (for categorical variables)

Typically vary hues, easier to distinguish than lightness of the same hue Try to keep the number of colors low

https://seaborn.pydata.org/tutorial/color_palettes.html

Qualitative palettes (for categorical variables)

Examples from Seaborn library on the right:

Color Brewer tool:

https://seaborn.pydata.org/tutorial/color palettes. html

Quantitative sequential palettes (for numerical variables)

Vary lightness rather than (just) hue (hue is circular, hard to interpret)

Discrete vs continuous:

[^2]
Quantitative diverging palettes

```
For numerical variables with a special midpoint, often 0 (such as increase / decrease)
```

Midpoint displayed as a special neutral color, e.g. grey

Summary

Visual perception:

- light on the retina, transduction on photoreceptor cells
- feature detection, pattern formation, interpretation

Light and color:

- Visible light as a part of electromagnetic spectrum
- Three types of cones sensitive to different wavelengths of light

Color spaces (LMS, RGB, HSL, HSV, CMYK, RYB)
Colors in visualization (qualitative and quantitative palettes, color blindness, sparing use of colors)

Graphics file formats (for exporting graphs)

Raster formats: store your plot as pixels at some resolution

- resolution leads to tradeoff between size and quality
- prefer lossless compression (PNG rather than JPEG)
- transparent background may be also a good idea

Vector formats: store your plot as geometric objects (SVG, PDF, EPS)

- can be arbitrarily enlarged, editable
- can be large if many points / lines (subsample data?)
- vector formats usually preferable unless not supported by software
- it is a good idea to include fonts in the file
- beware that these file formats may include bitmaps

[^0]: https://commons.wikimedia.org/wiki/File:Three Main Layers of the Eye.png

[^1]: https://jamie-wong.com/post/color/

[^2]: https://seaborn.pydata.org/tutorial/color_palettes.html

