Lecture 4

Summary statistics

Data visualization • 1-DAV-105
Lecture by Broňa Brejová
More details in the notebook version

Introduction

Summary statistics (popisné charakteristiky / štatistiky):
quantities that summarize basic properties of a single variable (a table column), such as the mean.

We can also characterize dependencies between pairs of variables.
Together with simple plots, they give us the first glimpse at the data when working with a new data set.

Data set for today

- The same data set as in group tasks 04.
- The data set describes 2049 movies.
- Originally downloaded from
https://www.kaggle.com/rounakbanik/the-movies-dataset and preprocessed, keeping only movies with at least 500 viewer votes.
url = 'https://bbrejova.github.io/viz/data/Movies small.csv' movies = pd.read_csv(url) display(movies.head())

title	year	budget	revenue	original_language	runtime	release_date	vote_average	vote_count	overview
Toy Story	1995	30000000.0	373554033.0	en	81.0	1995-10-30	7.7	5415.0	Led by Woody, Andy's toys live happily in his ...
Jumanji	1995	65000000.0	262797249.0	en	104.0	1995-12-15	6.9	2413.0	When siblings Judy and Peter discover an encha...
Heat	1995	60000000.0	187436818.0	en	170.0	1995-12-15	7.7	1886.0	Obsessive master thief, Neil McCauley leads a ...
GoldenEye	1995	58000000.0	352194034.0	en	130.0	1995-11-16	6.6	1194.0	James Bond must unmask the mysterious head of ...
Casino	1995	52000000.0	116112375.0	en	178.0	1995-11-22	7.8	1343.0	The life of the gambling paradise - Las Vegas ...

Measures of central tendency (miery stredu / polohy)

These represent a typical value in a sample $x=x_{1}, \ldots, x_{n}$ (one numerical column).
Mean (priemer)

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

This is the arithmetic mean, there are also geometric and harmonic means.
Median (medián) is the middle value when the values ordered by size.
For even n usually defined as the average of the two middle values.
Example:
Median of $10,12,15,16,16$ is 15.
Median of $10,12,15,16,16,20$ is 15.5 .

Measures of central tendency (cont.)

- Mean (priemer)
- Median (medián)
- Mode (modus) is the most frequent value (for a discrete variable). Mode of $10,12,15,16,16$ is 16.
For continuous variables, we may look for a mode in a histogram.
This is sensitive to bin size.

Properties of the measures

If we apply linear transformation $a \cdot x_{i}+b$ with the same a and b to all x_{i}, mean, median and mode will be transformed in the same way.

This corresponds e.g. to the change in the units of measurement (grams vs kilograms, degrees C vs degrees F)

Mean can be heavily influenced by outliers
800, 1000, 1100, 1200, 1800, 2000, 30000: mean 5414.3, median 1200 800, 1000, 1100, 1200, 1800, 2000, 10000: mean 2557.1, median 1200

Therefore we often prefer median (e.g. median salary).

Computation in Pandas

```
display(Markdown("**Properties of the column `year` in our table:**"))
print(f"Mean: {movies['year'].mean():.2f}")
print(f"Median: {movies['year'].median()}")
print(f"Mode:\n{movies['year'].mode()}")
```

Properties of the column year in our table:
Mean: 2004.14
Median: 2008.0
Mode:
02013
Name: year, dtype: int64

Shown in a histogram (whole and detail)

Years 2000-2017

What causes the difference between the mean and the median?

Summarizing many columns or rows

- Functions mean and median can be applied to all numerical columns
- With axis=1 we get means or medians in rows
display(movies.mean(numeric_only=True))
year
budget
revenue
runtime
vote_average

$$
\begin{array}{r}
2,004.1 \\
55,108,939.7 \\
198,565,134.3 \\
112.7 \\
6.6 \\
1,704.6
\end{array}
$$

vote_count
dtype: float64

Quantiles, percentiles and quartiles (kvantily, percentily, kvartily)

Median is the middle value in a sorted order; about 50\% of values are smaller and 50\% larger.

For a percentage p, the \boldsymbol{p}-th percentile is at position roughly $(p / 100) \cdot n$ in the sorted order of values.

Similarly quantile (in Pandas), but we give fraction between 0 and 1 rather than percentage.

Quartiles are three values Q_{1}, Q_{2} and Q_{3} that split input data into quarters. Therefore, Q_{2} is the median.

Quantiles in Pandas

```
display(Markdown("**Median:**"), - Quantile for 0.5:
    movies['year'].median())
display(Markdown("**Quantile for 0.5:**"),
    movies['year'].quantile(0.5))
display(Markdown("**All quartiles:**"),
    movies['year'].quantile([0.25, 0.5, 0.75]))
display(Markdown("**With step 0.1:**"),
    movies['year'].quantile(np.arange(0.1, 1, 0.1)))

\section*{Median:}
2008.0

Quantile for 0.5:
2008.0

All quartiles:
\(\begin{array}{ll}0.25 & 2,000.00 \\ 0.50 & 2,008.00 \\ 0.75 & 2,013.00 \\ \text { Name: year, dtype: float64 }\end{array}\)
With step 0.1:
```

0.10 1,988.80

```
0.10 1,988.80
0.20 1,998.00
0.20 1,998.00
0.30 2,002.00
0.30 2,002.00
0.40 2,005.00
0.40 2,005.00
0.50 2,008.00
0.50 2,008.00
0.60 2,010.00
0.60 2,010.00
0.70 2,012.00
0.70 2,012.00
0.80 2,014.00
0.80 2,014.00
0.90 2,015.00
0.90 2,015.00
Name: year, dtype: float64
```

```
Name: year, dtype: float64
```

```

\section*{Quartiles in a histogram (whole and detail)}


Years 1985-2017


\section*{Quantile interpolation}

Optional parameter interpolation accepts values 'linear' (default), 'lower', 'higher', 'midpoint', 'nearest'.

Minimum is at quantile 0, maximum at quantile 1, the rest evenly spaced between.
The quantile between two elements is influenced only by its two neighbors.
Example: list [0,10,20,100]
\(p=0: 0, p=1 / 3: 10, p=2 / 3: 20, p=1: 100\)
\(p=1 / 4\) : by default linear interpolation at \(3 / 4\) between 0 and 10, i.e. 7.5
Linear interpolation is continuous as p changes from 0 to 1 .

\section*{Quantile interpolation}

\section*{Quantiles for \([0,10,20,100]\)}
\begin{tabular}{ll}
0.01 & 0.30 \\
0.25 & 7.50 \\
0.50 & 15.00 \\
0.75 & 40.00 \\
dtype: & float64
\end{tabular}

Quantiles for \([\mathbf{0}, \mathbf{1 0 , 2 0}, 100]\) with interpolation=' lower '
\(0.01 \quad 0\)
0.250
\(0.50 \quad 10\)
\(0.75 \quad 20\)
dtype: int64

\section*{Measures of variability (miery variability)}

Values in the sample may be close to central values or spread widely.
Examples of measures:
Range of values from minimum to maximum (sensitive to outliers).
Interquartile range IQR (kvartilové rozpätie): range between \(Q_{1}\) and \(Q_{3}\) (contains the middle half of the data).

Variance and standard deviation (next)

\section*{Variance (rozptyl)}

For each \(x_{i}\) square its difference from the mean
Squaring gives non-negative values (and squares are easier to work with mathematically than absolute values).

Variance is the mean of these squares, but we divide by \(n-1\) rather than \(n\) :
\[
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
\]

Division by \(n\) would underestimate the true variance of the underlying population (more in the statistics course).

\section*{Standard deviation (smerodajná odchýlka)}

Square root of the variance
\[
s=\sqrt{s^{2}}
\]

It is in the same units as the original values
(variance is in units squared).
Recall:
\[
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
\]

\section*{Properties}

Larger variance and standard deviation mean that data are spread farther from the mean.

If we apply linear transformation \(a \cdot x_{i}+b\) with the \(a\) and \(b\) to all \(x_{i}\) :
Neither variance nor standard deviation change with \(b\).
Variance is multiplied by \(a^{2}\), standard deviation by \(|a|\).
These measures are strongly influenced by outliers:
800, 1000, 1100, 1200, 1800, 2000, 30000: st. dev. 10850.0, IQR 850 800, 1000, 1100, 1200, 1800, 2000, 10000: st. dev. 3310.5, IQR 850.
```

display(Markdown("**Minimum**"),
movies['year'].min())
display(Markdown("**Maximum**"),
movies['year'].max())
display(Markdown("**Mean**"),
movies['year'].mean())
display(Markdown("**Variance**"),
movies['year'].var())
display(Markdown("**Standard deviation**"),
movies['year'].std())
q1 = movies['year'].quantile(0.25)
q3 = movies['year'].quantile(0.75)
display(Markdown("**Q1, Q3 and IQR:**"),
q1, q3, q3-q1)

```

Minimum
1927
Maximum
2017

\section*{Mean}
2004. 1449487554905

\section*{Variance}
161.2714600681735

\section*{Standard deviation}
12.699270060447313

Q1, Q3 and IQR:
2000.0
2013.0
13.0

\section*{Outliers (odl'ahlé hodnoty)}

Outliers are the values which are far from the typical range of values.
In data analysis, it is important to check outliers.
If they represent errors, we may try to correct or remove them.
They can also represent interesting anomalies.
Different definitions of outliers may be appropriate in different situations.

\section*{One possible definition of outliers}

The criterion by statistician John Tukey:
Outliers are the values outside of the range \(\left[Q_{1}-k \cdot I Q R, Q_{3}+k \cdot I Q R\right]\), e.g. for \(k=1.5\).

In our example 800, 1000, 1100, 1200, 1800, 2000, 30000:
\(Q_{1}=1050, Q_{3}=1900, I Q R=850\).
\(Q_{1}-1.5 \cdot I Q R=-225, Q_{3}+1.5 \cdot I Q R=3175\).
Outliers are values smaller than -225 or larger than 3175; here only 30000.
The range of outliers is not influenced if we change the outliers.

\section*{Computation in Pandas}
```


get quartiles and iqr Outliers outside of range: [1980.5, 2032.5]

q1 = movies['year'].quantile(0.25)
q3 = movies['year'].quantile(0.75)
iqr = q3 - q1

compute thresholds for outliers

lower = q1 - 1.5 * iqr
upper = q3 + 1.5 * iqr

count outliers

count = movies.query('year < @lower or year > @upper')['year'].count()

```

\section*{Boxplot (krabicový graf)}

\section*{Developed by Mary Eleanor Hunt Spear and John Tukey.}

It shows the five-number summary: min, \(Q 1\), median \((Q 2), Q 3\), max
\(Q 1\) and \(Q 3\) : a box, median: line through box, min and max: whiskers Outliers often excluded from the whiskers and shown as points.


\section*{Boxplots are used for quick comparison}


\section*{For small datasets we may add strip plot}


Works well for smaller
languages, mess for en.

What do we see for sv, pt, th, hi, nb, id?

\section*{Code for the plot}
```

axes = sns.boxplot(data=movies, x='original_language',
y='year', color='C1')
sns.stripplot(data=movies, x='original_language',
y='year', color='C0',
alpha=0.5, size=5, jitter=0.2)

```


\section*{Quick overview of a data set: describe in Pandas}
```

movies.describe()

```
\begin{tabular}{crrrrrr} 
& year & budget & revenue & runtime & vote_average & vote_count \\
\hline count & \(2,049.00\) & \(1,959.00\) & \(1,965.00\) & \(2,049.00\) & \(2,049.00\) & \(2,049.00\) \\
mean & \(2,004.14\) & \(55,108,939.70\) & \(198,565,134.28\) & 112.66 & 6.63 & \(1,704.64\) \\
std & 12.70 & \(53,139,663.86\) & \(233,028,732.94\) & 24.76 & 0.77 & \(1,607.89\) \\
\(\mathbf{m i n}\) & \(1,927.00\) & 1.00 & 15.00 & 7.00 & 4.00 & 501.00 \\
\(\mathbf{2 5 \%}\) & \(2,000.00\) & \(16,000,000.00\) & \(52,882,018.00\) & 97.00 & 6.10 & 709.00 \\
\(\mathbf{5 0 \%}\) & \(2,008.00\) & \(38,000,000.00\) & \(122,200,000.00\) & 109.00 & 6.60 & \(1,092.00\) \\
\(\mathbf{7 5 \%}\) & \(2,013.00\) & \(75,000,000.00\) & \(250,200,000.00\) & 124.00 & 7.20 & \(2,000.00\) \\
\(\boldsymbol{m a x}\) & \(2,017.00\) & \(380,000,000.00\) & \(2,787,965,087.00\) & 705.00 & 9.10 & \(14,075.00\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & count & unique & top & freq & mean & std & min & 25\% & 50\% \\
\hline title & 2049 & 2018 & Beauty and the Beast & 3 & NaN & NaN & NaN & NaN & NaN \\
\hline year & 2,049.00 & NaN & NaN & NaN & 2,004.14 & 12.70 & 1,927.00 & 2,000.00 & 2,008.00 \\
\hline budget & 1,959.00 & NaN & NaN & NaN & 55,108,939.70 & 53,139,663.86 & 1.00 & 16,000,000.00 & 38,000,000.00 \\
\hline revenue & 1,965.00 & NaN & NaN & NaN & 198,565,134.28 & 233,028,732.94 & 15.00 & 52,882,018.00 & 122,200,000.00 \\
\hline original_language & 2049 & 16 & en & 1958 & NaN & NaN & NaN & NaN & NaN \\
\hline runtime & 2,049.00 & NaN & NaN & NaN & 112.66 & 24.76 & 7.00 & 97.00 & 109.00 \\
\hline release_date & 2049 & 1740 & 2014-12-25 & 6 & NaN & NaN & NaN & NaN & NaN \\
\hline vote_average & 2,049.00 & NaN & NaN & NaN & 6.63 & 0.77 & 4.00 & 6.10 & 6.60 \\
\hline vote_count & 2,049.00 & NaN & NaN & NaN & 1,704.64 & 1,607.89 & 501.00 & 709.00 & 1,092.00 \\
\hline overview & 2049 & 2049 & Led by Woody, Andy's toys live happily in his ... & 1 & NaN & NaN & NaN & NaN & NaN \\
\hline
\end{tabular}

\section*{Correlation (korelácia)}

We are often interested in relationships among variables (data columns).
Next: two correlation coefficients that measure strength of such relationships.
Beware: correlation does not imply causation

\section*{Correlation does not imply causation}

If electricity consumption grows in a very cold weather, there might be cause-and-effect relationship: the cold weather is causing people to use more electricity for heating.

If healthier people tend to be happier, which is the cause and which is effect?
Both studied variables can be also influenced by some third, unknown factor. For example, within a year, deaths by drowning increase with increased ice cream consumption. Both increases are spurred by warm weather.

The observed correlation can be just a coincidence, see the Redskins rule and a specialized webpage Spurious Correlations. You can easily find such "coincidences" by comparing many pairs of variables.

\section*{Pearson correlation coefficient}

It measures linear relationship between two variables.
Consider pairs of values \(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\), where \(\left(x_{i}, y_{i}\right)\) are two different features of the same object.
\[
\begin{aligned}
r & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} \\
r & =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
\end{aligned}
\]
where \(s_{x}\) is the standard deviation of variable \(x\).

\section*{Pearson correlation coefficient}
\[
r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) .
\]

Expression \(\left(x_{i}-\bar{x}\right) / s_{x}\) is called the standard score or \(\mathbf{z}\)-score: how many standard deviations above or below the mean is \(x_{i}\) ?

The product of z-scores for \(x_{i}\) and \(y_{i}\) is positive iff they lie on the same side of the respective means of \(x\) and \(y\).

\section*{Properties of Pearson correlation coefficient}

The value of \(r\) is always from interval \([-1,1]\).
1 if \(y\) grows linearly with \(x\), -1 if \(y\) decreases linearly
0 means no correlation.




\footnotetext{
https://commons.wikimedia.org/wiki/File:Correlation coefficient.png
}

\section*{Some cautions}

Pearson correlation measures only linear relationships (bottom row)
Pearson correlation does not depend on the slope of the best-fit line (middle row)

https://commons.wikimedia.org/wiki/File:Correlation examples2.svg

\section*{Properties of Pearson correlation}

What if we linearly scale each variable, i.e. \(a x_{i}+b, c y_{i}+d ?\) What if \(a>0, a=0, a<0\) ?

What if we switch \(x\) and \(y\) ?
\[
r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) .
\]

\section*{Properties of Pearson correlation}

Pearson correlation does not change if we linearly scale each variable, i.e. \(a x_{i}+b, c y_{i}+d\) (for \(a, c>0\) ).

Pearson correlation is symmetric wrt. \(x\) and \(y\).
Due to reliance on mean and std.dev. it is sensitive to outliers.
\[
r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
\]

\section*{Linear regression}

The process of finding the line best representing the relationship of \(x\) and \(y\). In higher dimensions we can predict one variable as a linear combination of many. You will study linear regression in later courses.
We may draw regression lines in some plots.

\[
\begin{aligned}
& \mathrm{x}=[10,8,13,9,11,14,6,4,12,7,5] \\
& \mathrm{y} 1=[8.04,6.95,7.58,8.81,8.33,9.96, \\
& 7.24,4.26,10.84,4.82,5.68] \\
& \text { sns. regplot }(\mathrm{x}=\mathrm{x}, \mathrm{y}=\mathrm{y} 1)
\end{aligned}
\]

\section*{Spearman's rank correlation coefficient}

It can detect non-linear relationships.
We first convert each variable into ranks:
Rank of \(x_{i}\) is its index in the sorted order of \(x_{1}, \ldots, x_{n}\).
Equal values get the same (average) rank.
For example, the ranks of \(10,0,10,20,10,20\) are \(3,1,3,5.5,3,5.5\).
Then we compute Pearson correlation coefficient of the two rank sequences.

\section*{Properties of Spearman's rank correlation coeficient}

Values of 1, -1 if \(y\) monotonically increases or decreases with \(x\).

It is less sensitive to outliers (actual values of \(x\) and \(y\) are not important).


\section*{Computation in Pandas}
movies.corr(numeric_only=True)
year budget revenue runtime vote_average vote_count
\begin{tabular}{ccccccc|}
\hline year & 1.00 & 0.28 & 0.12 & -0.07 & -0.34 & 0.12 \\
budget & 0.28 & 1.00 & 0.69 & 0.22 & -0.18 & 0.47 \\
revenue & 0.12 & 0.69 & 1.00 & 0.25 & 0.06 & 0.69 \\
runtime & -0.07 & 0.22 & 0.25 & 1.00 & 0.31 & 0.25 \\
vote_average & -0.34 & -0.18 & 0.06 & 0.31 & 1.00 & 0.33 \\
vote_count & 0.12 & 0.47 & 0.69 & 0.25 & 0.33 & 1.00
\end{tabular}

\section*{Computation in Pandas (cont.)}
```

movies.corr(method='spearman', numeric_only=True)

```
\begin{tabular}{ccrrrrc|} 
& year & budget & revenue & runtime & vote_average & vote_count \\
\hline year & 1.00 & 0.21 & 0.02 & -0.03 & -0.27 & 0.14 \\
budget & 0.21 & 1.00 & 0.68 & 0.24 & -0.28 & 0.37 \\
revenue & 0.02 & 0.68 & 1.00 & 0.21 & -0.08 & 0.56 \\
\hline runtime & -0.03 & 0.24 & 0.21 & 1.00 & 0.32 & 0.27 \\
vote_average & -0.27 & -0.28 & -0.08 & 0.32 & 1.00 & 0.29 \\
vote_count & 0.14 & 0.37 & 0.56 & 0.27 & 0.29 & 1.00 \\
\hline
\end{tabular}

```

figure, axes = plt.subplots(1, 2, figsize=(10,5))

plot of values

sns.regplot(x=movies['revenue'] / le6, y=movies['vote_count'],
ax=axes[0], scatter_kws={'alpha':0.7, 's':5})
axes[0].set_xlabel('revenue in millions')
axes[0].set_ylabel('vote count')

compute ranks

revenue_rank = movies['revenue'].rank()
vote_count_rank = movies['vote_count'].rank()

plot of ranks

sns.regplot(x=revenue_rank, y=vote_count_rank,
ax=axes[1], scatter_kws={'alpha':0.7, 's':5})
axes[1].set_xlabel('rank of revenue')
axes[1].set_ylabel('rank of vote count')

```



\section*{Anscombe's quartet}

Four artificial data sets designed by Francis Anscombe.

The same or very similar values of: means and variances of \(x\) and \(y\),

 Pearson correlation coefficient \((0.816)\) and linear regression line.



\section*{Anscombe's quartet}

The same summary statistics, but visually very different

Importance of visualization:
Plots often give us a much better idea

 of the properties of a data set than simple numerical summaries.

The bottom row illustrates the influence of outliers on correlation and regression.



\section*{Visual overview of a data set:} pairplot in Seaborn



\section*{How to compute summaries for groups?}


\section*{How to compute summaries for groups?}

Method groupby splits the table into groups based on values of some column.
We can apply a summary statistics function or describe on each group.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & year & budget & revenue & runtime & vote_average & vote_count \\
\hline cn & 2,006.00 & 12,902,809.00 & 39,388,380.00 & 108.50 & 7.20 & 762.50 \\
\hline da & 2,010.00 & 10,000,000.00 & 16,740,418.00 & 119.00 & 6.80 & 867.50 \\
\hline de & 2,003.50 & 6,250,000.00 & 70,000,000.00 & 129.00 & 7.60 & 669.00 \\
\hline en & 2,008.00 & 40,000,000.00 & 126,397,819.00 & 109.00 & 6.60 & 1,126.00 \\
\hline es & 2,007.00 & 2,000,000.00 & 30,448,000.00 & 118.00 & 7.60 & 797.00 \\
\hline
\end{tabular}
subset = movies.loc[:, ['original_language', 'year', 'budget']] subset.groupby('original_language').describe().head(3).transpose()
\begin{tabular}{|crrrr|}
\hline & original_language & cn & da & de \\
\hline year & count & 4.00 & 6.00 & 8.00 \\
& mean & \(2,005.75\) & \(2,009.33\) & \(1,992.50\) \\
& std & 4.03 & 3.61 & 28.13 \\
& min & \(2,001.00\) & \(2,003.00\) & \(1,927.00\) \\
& \(\mathbf{2 5 \%}\) & \(2,003.25\) & \(2,008.25\) & \(1,993.75\) \\
& \(\mathbf{5 0 \%}\) & \(2,006.00\) & \(2,010.00\) & \(2,003.50\) \\
& \(\mathbf{7 5 \%}\) & \(2,008.50\) & \(2,011.75\) & \(2,006.50\) \\
& max & \(2,010.00\) & \(2,013.00\) & \(2,013.00\) \\
& budget & 3.00 & 5.00 & 8.00 \\
& meant & \(14,872,795.67\) & \(13,440,000.00\) & \(18,223,718.75\) \\
& & & &
\end{tabular}

\section*{Summary}

\section*{Summary statistics:}
- mean, median, mode
- percentiles, quantiles, quartiles
- min, max, interquartile range, variance, standard deviation
- Pearson and Spearman correlation

More details in a statistics course

\section*{Visualization:}
- boxplot
- scatter plots with regression lines
- pairplot

\section*{Pandas:}
- functions for computing statistics, describe
- groupby

Next week: more Pandas```

