
1 Lecture 1b: Quick Introduction to New Libraries
Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

• We will now briefly discuss several libraries which will be used in the next tutorial.
• We will cover details of these libraries in the coming weeks, this is just a glipse of things to

come.

[1]: # importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

1.1 Libraries NumPy and Pandas
• Pandas is a Python library for working with tabular data.
• NumPy is a library of efficient multi-dimensional arrays used for numerical computations.

1.1.1 NumPy array and arithmetical operations with arrays

• Function np.arange below creates a list of numbers in interval [1, 3) with step 0.5 (general-
ization of Python range).

• It is stored as an object of array class from the Numpy library.

[2]: x = np.arange(1, 3, 0.5)
print('x:', x)

x: [1. 1.5 2. 2.5]

• We can do various arithmetic operations on whole NumPy arrays or apply predefined functions
such as np.exp.

• Such operations are typically done element-by-element.

[3]: print('x:', x)
print('x+1:', x+1)
print('x*x:', x*x)
print('np.exp(x):', np.exp(x))

x: [1. 1.5 2. 2.5]
x+1: [2. 2.5 3. 3.5]
x*x: [1. 2.25 4. 6.25]
np.exp(x): [2.71828183 4.48168907 7.3890561 12.18249396]

1.1.2 Creating Pandas DataFrame

• Below we create an object of Pandas DataFrame class.

1

https://bbrejova.github.io/viz/
https://pandas.pydata.org/
https://numpy.org/
https://numpy.org/doc/stable/reference/generated/numpy.arange.html
https://numpy.org/doc/stable/reference/generated/numpy.array.html

• We will cover most Pandas functions used below next week, for now the details are not
important.

[4]: def convert_table(x, function_dict):
""" x is a list (or Numpy array) of values of x,
function_dict is a dictionary containing function names as keys
and lists of function values as values. The result will be a Pandas
DataFrame (table) with each row containing triple x, function, value.
Zeroes and negative values are masked as missing
to avoid problems with logarithmic y axis."""

check that all functions have the same number of values as x
for f in function_dict:

assert(len(function_dict[f])==len(x))

create a wide table with each function as one columns
functions_wide = pd.DataFrame(function_dict, index=x)
reformat to long format
where each row is a triple x, function name, function value
functions = (functions_wide.reset_index()

.melt(id_vars='index')

.rename(columns={'variable':'function', 'index':'x'}))
mask values <= 0 as missing values
val = functions['value']
functions['value'] = val.mask(val <= 0, np.nan)
return functions

[5]: functions = convert_table(x, {'quadratic': x * x,'cubic': x * x * x})

Let us look at the resulting table functions:

• It has three columns named 'x', 'function' and 'value'.
• Each row is a triple, containing a function name and the values of 𝑥 and 𝑓(𝑥).
• E.g. one of the rows for the cubic function has 𝑥 = 2 and 𝑓(𝑥) = 23 = 8.

[6]: display(functions)

x function value
0 1.0 quadratic 1.000
1 1.5 quadratic 2.250
2 2.0 quadratic 4.000
3 2.5 quadratic 6.250
4 1.0 cubic 1.000
5 1.5 cubic 3.375
6 2.0 cubic 8.000
7 2.5 cubic 15.625

2

1.2 Displaying Pandas DataFrame using Seaborn and Plotly libraries
• Seaborn library is an extension of Matplotlib.
• It is very convenient for displaying tables.
• In the sns.lineplot we first give the table and then specify, which columns should be used

as x coordinate, y coordinate and color (hue).
• One line will be automaticlaly drawn for each distinct value in the hue column and a legend

will be added.

[7]: figure, axes = plt.subplots()
sns.lineplot(functions, x='x', y='value', hue='function', ax=axes)
pass

• Another popular library is Plotly.
• It provides some additional plot types and all plots are interactive.
• For example, we can also zoom into parts of the plot by selecting a rectangle.
• A menu with additional options appears in the top right corner of the plot.
• A line plot is created similarly as in Seaborn (option color is used instead of hue).

[8]: figure = px.line(functions, x="x", y="value", color='function')
figure.show()

1.3 Interactive plots in Plotly Dash
• Dash library by Plotly allows adding control elements (selectors, sliders, buttons, …).
• It is not preinstalled in Colab, so the next line will install it.

[]: ! pip install dash

3

https://seaborn.pydata.org/tutorial.html
https://plotly.com/python/plotly-express/
https://dash.plotly.com/

• The code below creates an interactive plot in which the user can choose which functions from
the list to display.

• The code has many comments so read through it carefully.

[10]: from dash import Dash, dcc, html, Input, Output

create a list of all functions
all_functions = list(functions['function'].unique())

create a new dash application app
app = Dash(__name__)

Create layout of items in application
one html <div> item containing text as small headwers (H4),
items for individual inputs and a graph at the bottom
Currently we have two inputs:
an input field for entering title text
checkboxes for selecting functions
These elements have identifiers which will be used later in the code
app.layout = html.Div([

html.H4("Plot title: "),
input field for entering title text:
dcc.Input(

id='graph-title',
type='text',
value='My plot'

),
html.H4("Select functions: "),
checkboxes for selecting functions:
dcc.Checklist(

id='selected-functions',
options=all_functions,
value=['quadratic'],
inline=True # place checkboxes horizontally

),
graph itself
dcc.Graph(id='graph-content')

])

@app.callback is a function decorator applied to function update_figure below.
It defines that this function will be called to update the graph when the␣

↪user makes a change.
Input will be the value entered to the input field with id graph-title and
the list of functions selected in dcc.Checklist object with id␣

↪'selected-functions'.
Output will be the graph created by the function update_figure below,␣

↪which will be used

4

to update dcc.Graph object with id 'graph-content'
@app.callback(

Output('graph-content', 'figure'),
[Input('graph-title', 'value'),
Input('selected-functions', 'value')
]

)
def update_figure(title, selected_functions):

""" Function for ploting functions listed in list selected_functions
with plot title given in title"""

select a subset of functions table with just those functions in input list
functions_subset = functions.query('function in @selected_functions')

create a plotly line plot using the smaller table in functions_subset
figure = px.line(

functions_subset, x="x", y="value", color="function",
width=800, height=500

)

add title to the plot
figure.update_layout(title_text=title)

return figure

run the whole application
app.run_server(mode='inline')

<IPython.lib.display.IFrame at 0x7f8f001c8e80>

5

	Lecture 1b: Quick Introduction to New Libraries
	Libraries NumPy and Pandas
	NumPy array and arithmetical operations with arrays
	Creating Pandas DataFrame

	Displaying Pandas DataFrame using Seaborn and Plotly libraries
	Interactive plots in Plotly Dash

