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Lecture by Broňa Brejová

• We will now briefly discuss several libraries which will be used in the next tutorial.
• We will cover details of these libraries in the coming weeks, this is just a glipse of things to

come.

[1]: # importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

1.1 Libraries NumPy and Pandas
• Pandas is a Python library for working with tabular data.
• NumPy is a library of efficient multi-dimensional arrays used for numerical computations.

1.1.1 NumPy array and arithmetical operations with arrays

• Function np.arange below creates a list of numbers in interval [1, 3) with step 0.5 (general-
ization of Python range).

• It is stored as an object of array class from the Numpy library.

[2]: x = np.arange(1, 3, 0.5)
print('x:', x)

x: [1. 1.5 2. 2.5]

• We can do various arithmetic operations on whole NumPy arrays or apply predefined functions
such as np.exp.

• Such operations are typically done element-by-element.

[3]: print('x:', x)
print('x+1:', x+1)
print('x*x:', x*x)
print('np.exp(x):', np.exp(x))

x: [1. 1.5 2. 2.5]
x+1: [2. 2.5 3. 3.5]
x*x: [1. 2.25 4. 6.25]
np.exp(x): [ 2.71828183 4.48168907 7.3890561 12.18249396]

1.1.2 Creating Pandas DataFrame

• Below we create an object of Pandas DataFrame class.
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• We will cover most Pandas functions used below next week, for now the details are not
important.

[4]: def convert_table(x, function_dict):
""" x is a list (or Numpy array) of values of x,
function_dict is a dictionary containing function names as keys
and lists of function values as values. The result will be a Pandas
DataFrame (table) with each row containing triple x, function, value.
Zeroes and negative values are masked as missing
to avoid problems with logarithmic y axis."""

# check that all functions have the same number of values as x
for f in function_dict:

assert(len(function_dict[f])==len(x))

# create a wide table with each function as one columns
functions_wide = pd.DataFrame(function_dict, index=x)
# reformat to long format
# where each row is a triple x, function name, function value
functions = (functions_wide.reset_index()

.melt(id_vars='index')

.rename(columns={'variable':'function', 'index':'x'}))
# mask values <= 0 as missing values
val = functions['value']
functions['value'] = val.mask(val <= 0, np.nan)
return functions

[5]: functions = convert_table(x, {'quadratic': x * x,'cubic': x * x * x})

Let us look at the resulting table functions:

• It has three columns named 'x', 'function' and 'value'.
• Each row is a triple, containing a function name and the values of 𝑥 and 𝑓(𝑥).
• E.g. one of the rows for the cubic function has 𝑥 = 2 and 𝑓(𝑥) = 23 = 8.

[6]: display(functions)

x function value
0 1.0 quadratic 1.000
1 1.5 quadratic 2.250
2 2.0 quadratic 4.000
3 2.5 quadratic 6.250
4 1.0 cubic 1.000
5 1.5 cubic 3.375
6 2.0 cubic 8.000
7 2.5 cubic 15.625
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1.2 Displaying Pandas DataFrame using Seaborn and Plotly libraries
• Seaborn library is an extension of Matplotlib.
• It is very convenient for displaying tables.
• In the sns.lineplot we first give the table and then specify, which columns should be used

as x coordinate, y coordinate and color (hue).
• One line will be automaticlaly drawn for each distinct value in the hue column and a legend

will be added.

[7]: figure, axes = plt.subplots()
sns.lineplot(functions, x='x', y='value', hue='function', ax=axes)
pass

• Another popular library is Plotly.
• It provides some additional plot types and all plots are interactive.
• For example, we can also zoom into parts of the plot by selecting a rectangle.
• A menu with additional options appears in the top right corner of the plot.
• A line plot is created similarly as in Seaborn (option color is used instead of hue).

[8]: figure = px.line(functions, x="x", y="value", color='function')
figure.show()

1.3 Interactive plots in Plotly Dash
• Dash library by Plotly allows adding control elements (selectors, sliders, buttons, …).
• It is not preinstalled in Colab, so the next line will install it.

[ ]: ! pip install dash
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• The code below creates an interactive plot in which the user can choose which functions from
the list to display.

• The code has many comments so read through it carefully.

[10]: from dash import Dash, dcc, html, Input, Output

# create a list of all functions
all_functions = list(functions['function'].unique())

# create a new dash application app
app = Dash(__name__)

# Create layout of items in application
# one html <div> item containing text as small headwers (H4),
# items for individual inputs and a graph at the bottom
# Currently we have two inputs:
# an input field for entering title text
# checkboxes for selecting functions
# These elements have identifiers which will be used later in the code
app.layout = html.Div([

html.H4("Plot title: "),
# input field for entering title text:
dcc.Input(

id='graph-title',
type='text',
value='My plot'

),
html.H4("Select functions: "),
# checkboxes for selecting functions:
dcc.Checklist(

id='selected-functions',
options=all_functions,
value=['quadratic'],
inline=True # place checkboxes horizontally

),
# graph itself
dcc.Graph(id='graph-content')

])

# @app.callback is a function decorator applied to function update_figure below.
# It defines that this function will be called to update the graph when the␣

↪user makes a change.
# Input will be the value entered to the input field with id graph-title and
# the list of functions selected in dcc.Checklist object with id␣

↪'selected-functions'.
# Output will be the graph created by the function update_figure below,␣

↪which will be used
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# to update dcc.Graph object with id 'graph-content'
@app.callback(

Output('graph-content', 'figure'),
[Input('graph-title', 'value'),
Input('selected-functions', 'value')
]

)
def update_figure(title, selected_functions):

""" Function for ploting functions listed in list selected_functions
with plot title given in title"""

# select a subset of functions table with just those functions in input list
functions_subset = functions.query('function in @selected_functions')

# create a plotly line plot using the smaller table in functions_subset
figure = px.line(

functions_subset, x="x", y="value", color="function",
width=800, height=500

)

# add title to the plot
figure.update_layout(title_text=title)

return figure

# run the whole application
app.run_server(mode='inline')

<IPython.lib.display.IFrame at 0x7f8f001c8e80>
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