
Lecture 1a
Visualization: History and

Examples
Data visualization · 1-DAV-105

Lecture by Broňa Brejová

http://compbio.fmph.uniba.sk/vyuka/viz/

René Descartes, La Géométrie, 1637

Introduced Cartesian coordinate system,
similar ideas also Nicole Oresme (14th
century)

William Playfair, Commercial and Political Atlas, 1786

Playfair invented or
popularized different types of
graphs (line and area graphs,
bar graphs, pie charts)

https://commons.wikimedia.org/wiki/File:1786_Playfair_-_Chart_of_import_and_exports_of_England_to_and_from_all_North_America_from
_the_year_1770_to_1782.jpg

https://commons.wikimedia.org/wiki/File:1786_Playfair_-_Chart_of_import_and_exports_of_England_to_and_from_all_North_America_from_the_year_1770_to_1782.jpg
https://commons.wikimedia.org/wiki/File:1786_Playfair_-_Chart_of_import_and_exports_of_England_to_and_from_all_North_America_from_the_year_1770_to_1782.jpg

John Snow, On the Mode of Communication of Cholera,
1854

Snow tracked cholera cases in
1854 outbreak and displayed
them clustered around a single
London well

https://commons.wikimedia.org/wiki/File:Snow-cholera-map-1.jpg

https://commons.wikimedia.org/wiki/File:Snow-cholera-map-1.jpg

Florence Nightingale, Diagram of the causes of mortality in
the army in the East, 1858
Nightingale led a field hospital
during Crimean War, reported
to the government on poor
conditions causing deaths from
typhus, cholera etc

https://commons.wikimedia.org/wiki/File:Nightingale-mortality.jpg

https://commons.wikimedia.org/wiki/File:Nightingale-mortality.jpg

Charles Minard, Figurative Map of the successive losses in
men of the French Army in the Russian campaign
1812–1813, 1869

https://commons.wikimedia.org/wiki/File:Minard.png

https://commons.wikimedia.org/wiki/File:Minard.png

Pierre Émile Levasseur, 1876

https://commons.wikimedia.org/wiki/File:Levasseur_cartogram.png

https://commons.wikimedia.org/wiki/File:Levasseur_cartogram.png

Otto Neurath, Gesellschaft und Wirtschaft, 1930

https://www.digital.wienbibliothek.at/wbrobv/content/pageview/2296000

https://www.digital.wienbibliothek.at/wbrobv/content/pageview/2296000

Mann, Bradley & Hughes: Northern hemisphere
temperatures during the past millennium[...] 1999
Hockey stick graph, created
publicity and controversy,
featured also in 2001
Intergovernmental Panel on
Climate Change Third
Assessment Report

https://en.wikipedia.org/wiki/File:T_comp_61-90.pdf CC BY-SA Klaus Bittermann; original article
http://www.geo.umass.edu/faculty/bradley/mann1999.pdf

https://en.wikipedia.org/wiki/File:T_comp_61-90.pdf
http://www.geo.umass.edu/faculty/bradley/mann1999.pdf

Anderson & Daniels: Film Dialog from 2,000 Screenplays,
Broken Down by Gender and Age, 2016

https://pudding.cool/2017/03/film-dialogue/

https://pudding.cool/2017/03/film-dialogue/

Gapminder
foundation, World
Health Chart
2019, 2020

https://www.gapminder.org/fw/world-health-chart/whc2019/ CC-BY, free license

Original version by Hans
Rosling in his 2006 TED
talk

https://www.gapminder.org/fw/world-health-chart/whc2019/

Two other recent examples

Comparing size of software

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Deadly pandemics in history

https://www.visualcapitalist.com/history-of-pandemics-deadliest/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/
https://www.visualcapitalist.com/history-of-pandemics-deadliest/

Additional resources

● Tableaux.com: Data is beautiful: 10 of the best data visualization examples
from history to today
https://www.tableau.com/learn/articles/best-beautiful-data-visualization-examp
les

● Michael Friendly: History of Data Visualization
https://friendly.github.io/HistDataVis/

● Hans Rosling The best stats you've ever seen (TED Talk)
https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen

https://www.tableau.com/learn/articles/best-beautiful-data-visualization-examples
https://www.tableau.com/learn/articles/best-beautiful-data-visualization-examples
https://friendly.github.io/HistDataVis/
https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen

1 Lecture 1b: Introduction to Jupyter Notebooks, Google Colab
and Matplotlib

Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

1.1 Jupyter Notebook
• Jupyter Notebook is a web-based software for interactive work in Python.
• It is frequently used for data processing and visualization.
• A document called notebook consists of cells.
• Each cell contains either text or Python code.
• The text may include formatting in Markdown language.
• A cell with Python code can be executed and the results display below, including images.
• This presentation is a Jupyter notebook.
• Notebook files have extension .ipynb.

1.2 Google Colab and alternatives
• You can work with Jupyter notebooks on many platforms (both online and installed on your

computer).
• In this course, we will primarily use Google Colab.
• Colab stores your notebooks on Google drive, executes them on Google servers, you only need

web browser on your computer.
• It integrates well with Google Classroom, which we use as well.
• You are free to use other options as long as the submitted notebooks can be executed in

Colab.
• One popular option is VS Code. It requires Jupyter software to be installed as well, see

documentation.

1.3 How to use Notebooks
• Notebooks have an intuitive interface with menus, toolbars, context menus (right-click) etc.
• It is useful to learn some keyboard shortcuts.

When you are not editting a cell:

• use Up and Down arrows to move between cells
• use Enter (or double-click) to start editing a cell
• use Esc to stop editing a cell
• use Ctrl-Enter to run a code in a cell, Shift-Enter to run the code and move to the next

cell

1.3.1 An example of a code cell

• A cell can include imports, function definitions, commands.
• Variables will be visible in other cells.
• The results of print are shown below the cell when executed.
• The last expression is printed below the cell when executed.

1

https://bbrejova.github.io/viz/
https://jupyter.org/
https://colab.research.google.com/notebooks/markdown_guide.ipynb
https://colab.research.google.com/
https://code.visualstudio.com/
https://code.visualstudio.com/docs/datascience/jupyter-notebooks

[1]: # create variable x with list of numbers 0,1,...,19
x = list(range(20))
variable y will contain squares of values in x
y = [xval * xval for xval in x]
print x and y
print(x)
print(y)
the last value (the first 5 values in y) is also printed automatically
y[0:5]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289,
324, 361]

[1]: [0, 1, 4, 9, 16]

1.3.2 Example of a cell with a plot

The plot uses variables x and y from the previous cell to plot the quadratic function.

[2]: import matplotlib.pyplot as plt
create figure with a single plot (axes)
figure, axes = plt.subplots()
plot x vs y
axes.plot(x, y, '.')
command pass to suppress unwanted output from plot
pass

2

1.4 Matplotlib library
• Matplotlib is a Python library for creating plots.
• In the code above, axes is the Matplotlib name for a single plot.
• Let us now plot two functions: quadratic and cubic in the same plot.

[3]: # x_dense is values from 0 to 10 with step 0.1
x_dense = [val / 10 for val in range(0, 100)]
values in y2_dense are values from x_dense squared
y2_dense = [xval ** 2 for xval in x_dense]
values in y3_dense are values from x_dense to the power of 3
y3_dense = [xval ** 3 for xval in x_dense]
plot the quadratic and cubic function in a single plot
figure, axes = plt.subplots()
axes.plot(x_dense, y2_dense, '.')
axes.plot(x_dense, y3_dense, '.')
pass

1.4.1 Setting labels and titles in Matplotlib

[4]: # the same plot as before, but name the two sets of points by label
figure, axes = plt.subplots()
axes.plot(x_dense, y2_dense, '.', label="quadratic")
axes.plot(x_dense, y3_dense, '.', label="cubic")

add titles for axes (usually use a more descriptive titles)
axes.set_xlabel("x")
axes.set_ylabel("f(x)")
legend (which plot is which function), uses the labels set in plt.plot

3

https://matplotlib.org/

axes.legend()
a title of the whole plot
axes.set_title("A plot of the quadratic and cubic functions")
pass

1.4.2 Setting lines, markers and colors

• In the axes.plot command, '.' represents formatting, in this case a small dot.
• The formatting string has three optional parts: marker, line, color.
• Examples: 'or' red circle, '-g' green solid line, '--' dashed line.
• See more in documentation.

[5]: x_sparse = range(0, 10)
y2_sparse = [xval ** 2 for xval in x_sparse]
y3_sparse = [xval ** 3 for xval in x_sparse]
figure, axes = plt.subplots()
axes.plot(x_sparse, y2_sparse, 'o-')
axes.plot(x_sparse, y3_sparse, '.--')
pass

4

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

1.4.3 Multiple plots per image

• Function plt.subplots can take as arguments the number of rows and the number of columns
and creates multiple subplots per image.

• Why is this figure not an ideal visual comparison of the quadratic and cubic function?

[6]: figure, axes = plt.subplots(1, 2)
axes[0].plot(x_dense, y2_dense)
axes[1].plot(x_dense, y3_dense)
pass

5

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html

• Each plot has a different y-axis, which is not good, because we do not immediately see that
the cubic function grows much faster than the quadratic.

• We will fix this in the next plot using sharey=True setting (sharex=True also exists but here
it is not needed).

[7]: # fixing the problem with different y-axis
figure, axes = plt.subplots(1, 2, sharey=True)
axes[0].plot(x_dense, y2_dense)
axes[1].plot(x_dense, y3_dense)
pass

1.5 Dangers of notebooks
• Frequent use pattern: the users have several cells finished and executed, they work on the

last cell in the notebook, and run it repeatedly until it works correctly. This avoids repeated
execution of the top cells, which may be slow.

• Notebooks do not force you to run cells in order from top to bottom. This generates problems
if you skip some cells or execute them repeatedly.

Good practice suggestions:

• Do not modify variables introduced in other cells.
• Refactor bigger or repeated parts of code to functions. This also hides local variables from

the rest of the notebook and thus prevents clashes.
• Ideally move functions to separate modules but this is harder in Colab.
• Avoid running cells out of order and occasionally restart the kernel (to remove variables) and

run all cells (using a menu function).

Below we see an example not obeying the first recommendation; the value printed will depened on
how many times we execute the second cell. This can lead to hard-to-find errors in a more complex
case.

6

[8]: value = 0

[9]: value += 1
print(value)

1

1.6 Additional resources
• Python Data Science Handbook by Jake VanderPlas, O’Reilly 2016
• Jupyter Notebook documentation
• Google Colab website and introductory video
• Matplotlib tutorials
• I don’t like notebooks by Joel Grus (entertaining video explaining some of the pitfalls of

notebooks)

7

https://jakevdp.github.io/PythonDataScienceHandbook/
https://jupyter-notebook.readthedocs.io/en/stable/
https://colab.research.google.com/
https://www.youtube.com/watch?v=inN8seMm7UI
https://matplotlib.org/stable/tutorials/index.html
https://www.youtube.com/watch?v=7jiPeIFXb6U

1 Lecture 1b: Quick Introduction to New Libraries
Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

• We will now briefly discuss several libraries which will be used in the next tutorial.
• We will cover details of these libraries in the coming weeks, this is just a glipse of things to

come.

[1]: # importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

1.1 Libraries NumPy and Pandas
• Pandas is a Python library for working with tabular data.
• NumPy is a library of efficient multi-dimensional arrays used for numerical computations.

1.1.1 NumPy array and arithmetical operations with arrays

• Function np.arange below creates a list of numbers in interval [1, 3) with step 0.5 (general-
ization of Python range).

• It is stored as an object of array class from the Numpy library.

[2]: x = np.arange(1, 3, 0.5)
print('x:', x)

x: [1. 1.5 2. 2.5]

• We can do various arithmetic operations on whole NumPy arrays or apply predefined functions
such as np.exp.

• Such operations are typically done element-by-element.

[3]: print('x:', x)
print('x+1:', x+1)
print('x*x:', x*x)
print('np.exp(x):', np.exp(x))

x: [1. 1.5 2. 2.5]
x+1: [2. 2.5 3. 3.5]
x*x: [1. 2.25 4. 6.25]
np.exp(x): [2.71828183 4.48168907 7.3890561 12.18249396]

1.1.2 Creating Pandas DataFrame

• Below we create an object of Pandas DataFrame class.

1

https://bbrejova.github.io/viz/
https://pandas.pydata.org/
https://numpy.org/
https://numpy.org/doc/stable/reference/generated/numpy.arange.html
https://numpy.org/doc/stable/reference/generated/numpy.array.html

• We will cover most Pandas functions used below next week, for now the details are not
important.

[4]: def convert_table(x, function_dict):
""" x is a list (or Numpy array) of values of x,
function_dict is a dictionary containing function names as keys
and lists of function values as values. The result will be a Pandas
DataFrame (table) with each row containing triple x, function, value.
Zeroes and negative values are masked as missing
to avoid problems with logarithmic y axis."""

check that all functions have the same number of values as x
for f in function_dict:

assert(len(function_dict[f])==len(x))

create a wide table with each function as one columns
functions_wide = pd.DataFrame(function_dict, index=x)
reformat to long format
where each row is a triple x, function name, function value
functions = (functions_wide.reset_index()

.melt(id_vars='index')

.rename(columns={'variable':'function', 'index':'x'}))
mask values <= 0 as missing values
val = functions['value']
functions['value'] = val.mask(val <= 0, np.nan)
return functions

[5]: functions = convert_table(x, {'quadratic': x * x,'cubic': x * x * x})

Let us look at the resulting table functions:

• It has three columns named 'x', 'function' and 'value'.
• Each row is a triple, containing a function name and the values of 𝑥 and 𝑓(𝑥).
• E.g. one of the rows for the cubic function has 𝑥 = 2 and 𝑓(𝑥) = 23 = 8.

[6]: display(functions)

x function value
0 1.0 quadratic 1.000
1 1.5 quadratic 2.250
2 2.0 quadratic 4.000
3 2.5 quadratic 6.250
4 1.0 cubic 1.000
5 1.5 cubic 3.375
6 2.0 cubic 8.000
7 2.5 cubic 15.625

2

1.2 Displaying Pandas DataFrame using Seaborn and Plotly libraries
• Seaborn library is an extension of Matplotlib.
• It is very convenient for displaying tables.
• In the sns.lineplot we first give the table and then specify, which columns should be used

as x coordinate, y coordinate and color (hue).
• One line will be automaticlaly drawn for each distinct value in the hue column and a legend

will be added.

[7]: figure, axes = plt.subplots()
sns.lineplot(functions, x='x', y='value', hue='function', ax=axes)
pass

• Another popular library is Plotly.
• It provides some additional plot types and all plots are interactive.
• For example, we can also zoom into parts of the plot by selecting a rectangle.
• A menu with additional options appears in the top right corner of the plot.
• A line plot is created similarly as in Seaborn (option color is used instead of hue).

[8]: figure = px.line(functions, x="x", y="value", color='function')
figure.show()

1.3 Interactive plots in Plotly Dash
• Dash library by Plotly allows adding control elements (selectors, sliders, buttons, …).
• It is not preinstalled in Colab, so the next line will install it.

[]: ! pip install dash

3

https://seaborn.pydata.org/tutorial.html
https://plotly.com/python/plotly-express/
https://dash.plotly.com/

• The code below creates an interactive plot in which the user can choose which functions from
the list to display.

• The code has many comments so read through it carefully.

[10]: from dash import Dash, dcc, html, Input, Output

create a list of all functions
all_functions = list(functions['function'].unique())

create a new dash application app
app = Dash(__name__)

Create layout of items in application
one html <div> item containing text as small headwers (H4),
items for individual inputs and a graph at the bottom
Currently we have two inputs:
an input field for entering title text
checkboxes for selecting functions
These elements have identifiers which will be used later in the code
app.layout = html.Div([

html.H4("Plot title: "),
input field for entering title text:
dcc.Input(

id='graph-title',
type='text',
value='My plot'

),
html.H4("Select functions: "),
checkboxes for selecting functions:
dcc.Checklist(

id='selected-functions',
options=all_functions,
value=['quadratic'],
inline=True # place checkboxes horizontally

),
graph itself
dcc.Graph(id='graph-content')

])

@app.callback is a function decorator applied to function update_figure below.
It defines that this function will be called to update the graph when the␣

↪user makes a change.
Input will be the value entered to the input field with id graph-title and
the list of functions selected in dcc.Checklist object with id␣

↪'selected-functions'.
Output will be the graph created by the function update_figure below,␣

↪which will be used

4

to update dcc.Graph object with id 'graph-content'
@app.callback(

Output('graph-content', 'figure'),
[Input('graph-title', 'value'),
Input('selected-functions', 'value')
]

)
def update_figure(title, selected_functions):

""" Function for ploting functions listed in list selected_functions
with plot title given in title"""

select a subset of functions table with just those functions in input list
functions_subset = functions.query('function in @selected_functions')

create a plotly line plot using the smaller table in functions_subset
figure = px.line(

functions_subset, x="x", y="value", color="function",
width=800, height=500

)

add title to the plot
figure.update_layout(title_text=title)

return figure

run the whole application
app.run_server(mode='inline')

<IPython.lib.display.IFrame at 0x7f8f001c8e80>

5

1 Lecture 2: Data processing in Pandas library
Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

1.1 Tabular data
• We will often work with data in the form of tables.
• Columns represent different features / variables (príznaky, atribúty, veličiny, premenné).
• Rows represent different items / data points / observations (countries, people, dates of mea-

surement, …).
• A small example:

Country Region Population Area (km2) Landlocked
Slovakia Europe 5450421 49035 yes
Czech Republic Europe 10649800 78866 yes
Hungary Europe 9772756 93030 yes
Poland Europe 38386000 312696 no

1.2 Pandas library
• Pandas is a Python library for data manipulation and analysis.
• It is fast and has many functions for data import and export in various formats.
• Documentation, overview, tutorial

Basic data structures

• Series: 1D table, all elements of the same type.
• DataFrame: 2D table, elements within each column of the same type.

NumPy library

• NumPy is a library of efficient multi-dimensional arrays used for numerical computations.
• We will mostly use Pandas, but some NumPy functions will be useful.
• Tutorial, reference

[93]: import numpy as np
import pandas as pd
from IPython.display import Markdown
import matplotlib.pyplot as plt

1.2.1 Creating Series and DataFrames

• Bellow we show two manual ways of creating a DataFrame containing the small table of
countries above.

• The first way gets a Series for each column, the second way gets a dictionary (or a tuple) for
each row.

• We will usually read tabular data from files, see an example in the second half this lecture.

1

https://bbrejova.github.io/viz/
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/getting_started/overview.html#overview
https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
https://numpy.org/
https://numpy.org/devdocs/user/quickstart.html
https://numpy.org/devdocs/reference/index.html

[94]: countries = pd.Series(['Slovakia', 'Czech Republic', 'Hungary', 'Poland'])
regions = pd.Series(['Europe', 'Europe', 'Europe', 'Europe'])
populations = pd.Series([5450421, 10649800, 9772756, 38386000])
areas = pd.Series([49035, 78866, 93030, 312696])
landlocked = pd.Series([True, True, True, False])
table = pd.DataFrame({'country':countries,

'region':regions,
'population':populations,
'area':areas,
'landlocked':landlocked})

display: special notebook command for pretty-printing data
display(table)

country region population area landlocked
0 Slovakia Europe 5450421 49035 True
1 Czech Republic Europe 10649800 78866 True
2 Hungary Europe 9772756 93030 True
3 Poland Europe 38386000 312696 False

[95]: list_of_dicts = [
{'country':'Slovakia', 'region':'Europe', 'population':5450421, 'area':

↪49035, 'landlocked':True},
{'country':'Czech Republic', 'region':'Europe', 'population':10649800,␣

↪'area':78866, 'landlocked':True},
{'country':'Hungary', 'region':'Europe', 'population':9772756, 'area':

↪93030, 'landlocked':True},
{'country':'Poland', 'region':'Europe', 'population':38386000, 'area':

↪312696, 'landlocked':False},
]
table_from_list = pd.DataFrame.from_records(list_of_dicts)
display(table_from_list)

country region population area landlocked
0 Slovakia Europe 5450421 49035 True
1 Czech Republic Europe 10649800 78866 True
2 Hungary Europe 9772756 93030 True
3 Poland Europe 38386000 312696 False

1.2.2 Accessing elements of Series and DataFrame by position

• Attribute ndim is the number of dimensions. E.g. areas.ndim is 1, table.ndim is 2.
• Attribute shape is a tuple holding the size in each dimension. E.g. areas.shape is (4,),

table.shape is (4,5).
• Rows and columns are numbered 0, 1, …
• To access a particular column / row, use some_series.iloc[row] or some_table.iloc[row,

column].
• Rows and columns in iloc can be

– a single number e.g. 0,

2

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.iloc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html

– a slice (range) e.g. 0:2 or : for everything,
– a list of positions e.g. [0, 2, 3]
– a list of boolean values [True, False, True, True].

• The result is a single element or a Series / DataFrame of a smaller size.

[96]: display(Markdown("**table:**"), table)
display(Markdown("**table.iloc[1, 2]:**"), table.iloc[1, 2])
display(Markdown("**table.iloc[[0, 2, 3], 0:2]**"), table.iloc[[0, 2, 3], 0:2])
display(Markdown("**table.iloc[[True, False, True, True], :]**"),

table.iloc[[True, False, True, True], :])

table:

country region population area landlocked
0 Slovakia Europe 5450421 49035 True
1 Czech Republic Europe 10649800 78866 True
2 Hungary Europe 9772756 93030 True
3 Poland Europe 38386000 312696 False

table.iloc[1, 2]:

10649800

table.iloc[[0, 2, 3], 0:2]

country region
0 Slovakia Europe
2 Hungary Europe
3 Poland Europe

table.iloc[[True, False, True, True], :]

country region population area landlocked
0 Slovakia Europe 5450421 49035 True
2 Hungary Europe 9772756 93030 True
3 Poland Europe 38386000 312696 False

1.2.3 Views vs. copies

• Accessing parts of tables by iloc may return a partial copy or simply a “view”.
• If we later modify this result, it is not clear if the original table is modified.
• Direct assignment of new values to a part of the table works: some_table.iloc[row,

column] = new_value modifies some_table.
• To copy a table, use other_table = some_table.copy(deep=True).

[97]: table2 = table.copy(deep=True)
create a copy of the original table

table2.iloc[0,0] = 'Slovensko'
display(table2)
table2 now has Slovensko instead of Slovakia

3

countries2 = table2.iloc[: , 0]
countries2 is now a view or a copy of one column of table2
countries2.iloc[2] = 'Maďarsko'
display(table2)
table2 now can have Hungary or Maďarsko
we get a warning

country region population area landlocked
0 Slovensko Europe 5450421 49035 True
1 Czech Republic Europe 10649800 78866 True
2 Hungary Europe 9772756 93030 True
3 Poland Europe 38386000 312696 False

/tmp/ipykernel_1087193/2667016646.py:10: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

countries2.iloc[2] = 'Maďarsko'

country region population area landlocked
0 Slovensko Europe 5450421 49035 True
1 Czech Republic Europe 10649800 78866 True
2 Maďarsko Europe 9772756 93030 True
3 Poland Europe 38386000 312696 False

1.2.4 Inplace operations

• Many operations return a new table.
• If you do not need the original table, you can specify option inplace=True.
• The example below sorts a table by a specified column, returning a new table or replacing

the old one.

[98]: # copy original table to table2
table2 = table.copy(deep=True)

table3 is a copy of table2 sorted by population size
table3 = table2.sort_values(by="population")

display both table2 and table3
display(Markdown("**Original table2:**"), table2)
display(Markdown("**Sorted table3:**"), table3)

now change table2 to be sorted by name of the country
table2.sort_values(by="country", inplace=True)
display(Markdown("**Sorted table2:**"), table2)

Original table2:

country region population area landlocked

4

0 Slovakia Europe 5450421 49035 True
1 Czech Republic Europe 10649800 78866 True
2 Hungary Europe 9772756 93030 True
3 Poland Europe 38386000 312696 False

Sorted table3:

country region population area landlocked
0 Slovakia Europe 5450421 49035 True
2 Hungary Europe 9772756 93030 True
1 Czech Republic Europe 10649800 78866 True
3 Poland Europe 38386000 312696 False

Sorted table2:

country region population area landlocked
1 Czech Republic Europe 10649800 78866 True
2 Hungary Europe 9772756 93030 True
3 Poland Europe 38386000 312696 False
0 Slovakia Europe 5450421 49035 True

1.2.5 Indexes

• Rows and columns have both an integer location (0,1,2,…) and an index (name).
• In our table, column names are 'country', 'region' etc.
• We have not named rows, so a default location-based index was constructed.

– See the sorted tables above—their index labels are kept from the original.
• Indexes can be obtained by attributes index and columns.
• We can set the country name as an index using set_index, the opposite is reset_index (in

Series, use set_axis and reset_index).
• Index can be more complex (multiindex), we will see later.

[99]: display(Markdown("**`table.columns` is an object of class `Index`:**"),
table.columns)

display(Markdown("**`table.columns.values` is an array of column names:**"),
table.columns.values)

display(Markdown("**`table.index.values` is an array of row names, "
+ "here equal to location:**"),

table.index.values)
display(Markdown("**`index` for Series `areas`:**"), areas.index.values)

display(Markdown("**`table` after setting country name as index:**"))
table2 = table.set_index('country')
display(table2)

display(Markdown("**`reset_index` will put the index back as a column:**"))
table3 = table2.reset_index()
display(table3)

5

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.set_index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.reset_index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.set_axis.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.reset_index.html

table.columns is an object of class Index:

Index(['country', 'region', 'population', 'area', 'landlocked'], dtype='object')

table.columns.values is an array of column names:

array(['country', 'region', 'population', 'area', 'landlocked'],
dtype=object)

table.index.values is an array of row names, here equal to location:

array([0, 1, 2, 3])

index for Series areas:

array([0, 1, 2, 3])

table after setting country name as index:

region population area landlocked
country
Slovakia Europe 5450421 49035 True
Czech Republic Europe 10649800 78866 True
Hungary Europe 9772756 93030 True
Poland Europe 38386000 312696 False

reset_index will put the index back as a column:

country region population area landlocked
0 Slovakia Europe 5450421 49035 True
1 Czech Republic Europe 10649800 78866 True
2 Hungary Europe 9772756 93030 True
3 Poland Europe 38386000 312696 False

1.2.6 Accessing elements by index

• Method some_table.loc[row, column] is an analog of iloc, but using indexes rather than
locations.

• You can also use [], and pandas will try to guess whether it is an index or location (but
sometimes it may guess wrong, so it is better to use explict iloc and loc).

• Some examples for Series:

[100]: populations2 = populations.set_axis(countries)
display(Markdown("**`populations2` Series with index:**"), populations2)
display(Markdown("**`populations2.loc['Slovakia']`**:"),

populations2.loc['Slovakia'])
display(Markdown("**`populations2.loc[['Slovakia','Poland']]`**:"),

populations2.loc[['Slovakia','Poland']])

display(Markdown("**`populations2[1]` and `populations2['Czech Republic']`**:"))
display(populations2[1], populations2['Czech Republic'])

populations2 Series with index:

6

Slovakia 5450421
Czech Republic 10649800
Hungary 9772756
Poland 38386000
dtype: int64

populations2.loc['Slovakia']:

5450421

populations2.loc[['Slovakia','Poland']]:

Slovakia 5450421
Poland 38386000
dtype: int64

populations2[1] and populations2['Czech Republic']:

10649800

10649800

1.2.7 Operations and functions on Series

• Operations such as +, * can be applied on two Series, causing them to be used on each
corresponding pair of elements.

• For example, populations / areas will compute population density for each country.
• You can also use a single number (scalar) as an operand, e.g. populations / 1e6 will get

population in millions.
• NumPy also contains functions that can be applied to each element of a series,

e.g. np.log(populations).
• Relational operators such as populations < 10e6 produce Series of boolean values.

– Those can be then used in [] or loc.

[101]: # creating two Series with country as index
populations2 = populations.set_axis(countries)
areas2 = areas.set_axis(countries)
display(Markdown("**`populations2 / areas2`:**"), populations2 / areas2)
display(Markdown("**`populations2 / 1e6`:**"), populations2 / 1e6)
display(Markdown("**`populations2 > 10e6`:**"), populations2 > 10e6)
display(Markdown("**`areas2[populations2 > 10e6]`:**"),

areas2.loc[populations2 > 10e6])
display(Markdown("**`np.log10(populations2)`:**"), np.log10(populations2))

populations2 / areas2:

Slovakia 111.153686
Czech Republic 135.036644
Hungary 105.049511
Poland 122.758206
dtype: float64

populations2 / 1e6:

7

Slovakia 5.450421
Czech Republic 10.649800
Hungary 9.772756
Poland 38.386000
dtype: float64

populations2 > 10e6:

Slovakia False
Czech Republic True
Hungary False
Poland True
dtype: bool

areas2[populations2 > 10e6]:

Czech Republic 78866
Poland 312696
dtype: int64

np.log10(populations2):

Slovakia 6.736430
Czech Republic 7.027341
Hungary 6.990017
Poland 7.584173
dtype: float64

Beware: when we combine two Series, e.g. by +, Pandas will use index, not position, to pair up
elements.

[102]: a = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
b = pd.Series([10, 20, 30], index=['c', 'a', 'e'])
c = pd.Series([100, 200])
display(Markdown("**Series a:**"), a)
display(Markdown("**Series b:**"), b)
display(Markdown("**Series c:**"), c)
display(Markdown("**Series a+b:**"), a + b)
display(Markdown("**Series a+c:**"), a + c)

Series a:

a 1
b 2
c 3
d 4
dtype: int64

Series b:

c 10
a 20

8

e 30
dtype: int64

Series c:

0 100
1 200
dtype: int64

Series a+b:

a 21.0
b NaN
c 13.0
d NaN
e NaN
dtype: float64

Series a+c:

a NaN
b NaN
c NaN
d NaN
0 NaN
1 NaN
dtype: float64

1.2.8 Working with DataFrame columns

• DataFrame is similar to a dictionary of Series objects (columns).
• For example, table['area'] or table.area is the column of country areas.
• New columns can be added to a DataFrame: table['density'] = table['population']

/ table['area']
• But table[0:2] are the first 2 rows of the table.

– To be save, use loc[] / iloc[] rather than just [].
• By table[table['population'] > 1e7] we get countries with more that 10 million people

(CZ, PL).

[103]: display(Markdown("**`table['area']`:**"), table['area'])
display(Markdown("**`table.area`:**"), table.area)
display(Markdown("**Adding density:**"))
display(Markdown("`table['density'] = table['population'] / table['area']`"))
table['density'] = table['population'] / table['area']
display(Markdown("**`table[0:2]`:**"), table[0:2])
display(Markdown("**`table[table['population'] > 1e7]`:**"),

table[table['population'] > 1e7])

table['area']:

0 49035
1 78866

9

2 93030
3 312696
Name: area, dtype: int64

table.area:

0 49035
1 78866
2 93030
3 312696
Name: area, dtype: int64

Adding density:

table['density'] = table['population'] / table['area']

table[0:2]:

country region population area landlocked density
0 Slovakia Europe 5450421 49035 True 111.153686
1 Czech Republic Europe 10649800 78866 True 135.036644

table[table['population'] > 1e7]:

country region population area landlocked density
1 Czech Republic Europe 10649800 78866 True 135.036644
3 Poland Europe 38386000 312696 False 122.758206

1.2.9 Selecting table rows with query

• Method query is very useful for selecting DataFrame rows satisfying some properties.
• In examples below, @ substitutes variable value.
• While loc[] and iloc[] raise an exception if the requested value is not found, query can

return an empty table.

[104]: display(Markdown("**`table.query(\"country=='Slovakia'\")`:**"),
table.query("country=='Slovakia'"))

def get_country(table, country):
"""Get a given country from the table"""
return table.query("country == @country")

display(Markdown("**The same but for Hungary and using a function:**"),
get_country(table, 'Hungary'))

display(Markdown("**Query with an empty result:**"))
display(Markdown("`table.query(\"population < 10e6 and not landlocked\")`:"))
display(table.query("population < 10e6 and not landlocked"))

table.query("country=='Slovakia'"):

country region population area landlocked density
0 Slovakia Europe 5450421 49035 True 111.153686

10

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html

The same but for Hungary and using a function:

country region population area landlocked density
2 Hungary Europe 9772756 93030 True 105.049511

Query with an empty result:

table.query("population < 10e6 and not landlocked"):

Empty DataFrame
Columns: [country, region, population, area, landlocked, density]
Index: []

1.2.10 Importing and exporting data

• Import and export is possible using many file formats (text-based CSV, JSON, HTML; binary
Excel, HDF5 etc.).

• We will mostly use CSV (=comma separated values) format.
– Each table row is one line of the file.
– Columns are separated by commas.
– Columns containing commas or end-of-line characters may be enclosed in quotation

marks.
– Sometimes a different column separator is used, e.g. tab "\t".

• Writing our table to a csv file: table.to_csv("countries.csv").
– If run in Colab, this will create a temporary file, which you can save on your computer

(see the right panel, tab Files).
• Conversely, table2 = pd.read_csv("countries.csv", index_col=0) will read data from

the file to a new DataFrame called table2.
• Input and output functions allow you to set many optional arguments to tweak the format.

1.3 Example: a table of country populations from the United Nations
• Obtained from the UN webpage https://data.un.org/
• We will read the table in CSV format directly from a URL.
• We need to play a bit with settings:

– We skip the top two lines.
– We supply our own (simpler) column names.
– We specify character encoding (default is UTF8) and that thousands are separted by a

comma in numerical values, such as 1,000,000.
– Note that empty fields (missing values) are imported as np.NaN.

[105]: # original source:
url = 'https://data.un.org/_Docs/SYB/CSV/

↪SYB65_1_202209_Population,%20Surface%20Area%20and%20Density.csv'
our local copy:
url = 'https://bbrejova.github.io/viz/data/Un_population.csv'
column_names = ['Region ID', 'Region', 'Year',

'Series', 'Value', 'Footnotes', 'Source']
un_table = pd.read_csv(url, encoding='latin-1', names=column_names,

skiprows=2, thousands=",")

11

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

print the first 5 rows to check the result
un_table.head()

[105]: Region ID Region Year \
0 1 Total, all countries or areas 2010
1 1 Total, all countries or areas 2010
2 1 Total, all countries or areas 2010
3 1 Total, all countries or areas 2010
4 1 Total, all countries or areas 2010

Series Value Footnotes \
0 Population mid-year estimates (millions) 6985.60 NaN
1 Population mid-year estimates for males (milli… 3514.41 NaN
2 Population mid-year estimates for females (mil… 3471.20 NaN
3 Sex ratio (males per 100 females) 101.20 NaN
4 Population aged 0 to 14 years old (percentage) 27.10 NaN

Source
0 United Nations Population Division, New York, …
1 United Nations Population Division, New York, …
2 United Nations Population Division, New York, …
3 United Nations Population Division, New York, …
4 United Nations Population Division, New York, …

[106]: # print the last 5 rows, to see if the bottom looks ok
un_table.tail()

[106]: Region ID Region Year \
7868 716 Zimbabwe 2022
7869 716 Zimbabwe 2022
7870 716 Zimbabwe 2022
7871 716 Zimbabwe 2022
7872 716 Zimbabwe 2022

Series Value \
7868 Population mid-year estimates for females (mil… 8.61
7869 Sex ratio (males per 100 females) 89.40
7870 Population aged 0 to 14 years old (percentage) 40.60
7871 Population aged 60+ years old (percentage) 4.80
7872 Population density 42.20

Footnotes \
7868 Projected estimate (medium fertility variant).
7869 Projected estimate (medium fertility variant).
7870 Projected estimate (medium fertility variant).
7871 Projected estimate (medium fertility variant).
7872 Projected estimate (medium fertility variant).

12

Source
7868 United Nations Population Division, New York, …
7869 United Nations Population Division, New York, …
7870 United Nations Population Division, New York, …
7871 United Nations Population Division, New York, …
7872 United Nations Population Division, New York, …

[107]: # check types of columns; strings are imported as object, which is expected
un_table.dtypes

[107]: Region ID int64
Region object
Year int64
Series object
Value float64
Footnotes object
Source object
dtype: object

• Each country has data for several years.
• There are several values per country and year, e.g. total population, the number of men and

women, sizes of three age groups.
• The first part of the table contains various continents and regions, later individual countries

arranged alphabetically from 'Afghanistan' to 'Zimbabwe'.

1.3.1 A simple table with total population across years

We will create a simpler table country_pop.

• It will contain only countries, not regions.
• It will contain only rows with total population, all available years.
• It will contain columns Country (originally Region) ,Year, and Population (originally

Value).

[108]: # get all rows for Afghanistan, choose the label for the first of them
first_country = un_table.query('Region == "Afghanistan"').index[0]
get all rows from the first Afghanistan onwards and all columns
un_countries = un_table.iloc[first_country:, :]
get only rows with total population and select only some columns using loc
country_pop = (un_countries

.query('Series=="Population mid-year estimates (millions)"')

.loc[:, ['Region', 'Year', 'Value']]

.rename(columns={'Value':'Population', 'Region':'Country'}))
print the start of the result
country_pop.head()

13

[108]: Country Year Population
930 Afghanistan 2010 28.19
937 Afghanistan 2015 33.75
945 Afghanistan 2020 38.97
953 Afghanistan 2022 41.13
960 Albania 2010 2.91

1.4 Tidy data, wide and long tables
• The original UN table has in column Value various values, including population size, sex

ratio, population density, etc.

• In general, one column of a table should contain values of the same type.

• This is true in our country_pop table with columns Country, Year, and Population.

• This type of table is called long and is usually preferable.

• For some analysis, we may want to have countries as rows and years as columns; this is called
a wide table.

• Pandas has methods to convert between the two formats, e.g. wide_to_long, melt, pivot,
unstack etc.

• See the article Tidy data by Hadley Wickham for a longer discussion.

1.5 Back to example: comparing populations in 2010 and 2022
• We select only two years from country_pop.
• Function pivot will use the column Country as the row index, values from column Year as

new column names and values from column Population as values to populate the table itself.
• Finally we rename the columns so that they are strings starting with a letter; otherwise they

are harder to be used in query.

[109]: display(Markdown("**Original `country_pop` table:**"), country_pop.head())

pop = (country_pop.query("Year==2010 or Year==2022")
.pivot(index='Country', columns=['Year'], values='Population')
.rename(columns={2010:'pop2010', 2022:'pop2022'}))

display(Markdown("**New `pop` table:**"), pop.head())

Original country_pop table:

Country Year Population
930 Afghanistan 2010 28.19
937 Afghanistan 2015 33.75
945 Afghanistan 2020 38.97
953 Afghanistan 2022 41.13
960 Albania 2010 2.91

14

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.wide_to_long.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.melt.html#pandas.melt
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot.html#pandas.DataFrame.pivot
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.unstack.html#pandas.DataFrame.unstack
https://www.jstatsoft.org/article/view/v059i10/v59i10.pdf
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot.html

New pop table:

Year pop2010 pop2022
Country
Afghanistan 28.19 41.13
Albania 2.91 2.84
Algeria 35.86 44.90
American Samoa 0.05 0.04
Andorra 0.07 0.08

[110]: # compute the difference between years for each country (positive = increase)
pop['difference'] = pop['pop2022'] - pop['pop2010']
relative difference, as a fraction of population in 2010
(value 1 means 100% increase)
pop['relDifference'] = pop['difference'] / pop['pop2010']
pop.head()

[110]: Year pop2010 pop2022 difference relDifference
Country
Afghanistan 28.19 41.13 12.94 0.459028
Albania 2.91 2.84 -0.07 -0.024055
Algeria 35.86 44.90 9.04 0.252091
American Samoa 0.05 0.04 -0.01 -0.200000
Andorra 0.07 0.08 0.01 0.142857

Now we will use this table to create some plots and tables.

• What can you observe from these data displays?
• Are some of these visualizations more useful than others or are they complementary? How

could we improve them?
• What other questions you could ask about this table and how would you answer them using

plots or tables?

[111]: figure, axes = plt.subplots()
axes.plot(pop.pop2010, pop.pop2022, '.')
axes.set_aspect('equal')
axes.set_xlabel('Population in 2010')
axes.set_ylabel('Population in 2022')
pass

15

[112]: figure, axes = plt.subplots()
axes.axhline(0, color="lightgrey")
axes.plot(pop.pop2010, pop.difference, '.')
axes.set_xlabel('Population in 2010')
axes.set_ylabel('Change from 2010 to 2022')
pass

16

[113]: figure, axes = plt.subplots()
axes.axhline(0, color="lightgrey")
axes.plot(pop.pop2010, pop.relDifference, '.')
axes.set_xlabel('Population in 2010')
axes.set_ylabel('Rel. change from 2010 to 2022')
pass

[114]: pop.sort_values('relDifference').head(10)

[114]: Year pop2010 pop2022 difference relDifference
Country
Saint Martin (French part) 0.04 0.03 -0.01 -0.250000
American Samoa 0.05 0.04 -0.01 -0.200000
Marshall Islands 0.05 0.04 -0.01 -0.200000
Bosnia and Herzegovina 3.81 3.23 -0.58 -0.152231
Ukraine 45.68 39.70 -5.98 -0.130911
Puerto Rico 3.72 3.25 -0.47 -0.126344
Lithuania 3.14 2.75 -0.39 -0.124204
Latvia 2.10 1.85 -0.25 -0.119048
Republic of Moldova 3.68 3.27 -0.41 -0.111413
Bulgaria 7.59 6.78 -0.81 -0.106719

[115]: pop.sort_values('relDifference', ascending=False).head(10)

[115]: Year pop2010 pop2022 difference relDifference
Country
Anguilla 0.01 0.02 0.01 1.000000

17

Turks and Caicos Islands 0.03 0.05 0.02 0.666667
Jordan 6.93 11.29 4.36 0.629149
Oman 2.88 4.58 1.70 0.590278
Qatar 1.71 2.70 0.99 0.578947
Niger 16.65 26.21 9.56 0.574174
Mayotte 0.21 0.33 0.12 0.571429
Equatorial Guinea 1.09 1.67 0.58 0.532110
Angola 23.36 35.59 12.23 0.523545
Bonaire, St. Eustatius & Saba 0.02 0.03 0.01 0.500000

[116]: neighbor_countries =␣
↪['Slovakia','Czechia','Hungary','Poland','Austria','Ukraine']

neighbors = pop.loc[neighbor_countries, :]
display(neighbors)

Year pop2010 pop2022 difference relDifference
Country
Slovakia 5.40 5.64 0.24 0.044444
Czechia 10.46 10.49 0.03 0.002868
Hungary 9.99 9.97 -0.02 -0.002002
Poland 38.60 39.86 1.26 0.032642
Austria 8.36 8.94 0.58 0.069378
Ukraine 45.68 39.70 -5.98 -0.130911

1.6 Summary and outlook
• We will work mostly with tabular data.
• We will store them in DataFrame from Pandas library.
• This is more convenient and more efficient than regular Python lists.
• We have seen several functions for basic manipulation:

– iloc[], loc[], query, head, set_index, reset_index, rename, pivot, copy,
sort_values, operations and functions on Series.

• Next lecture will be focused on examples of different chart types.
• More Pandas later.

18

Lecture 3a
Overview of Plot Types

Data visualization · 1-DAV-105
Lecture by Broňa Brejová

https://bbrejova.github.io/viz/

Plan for today
● Types of variables (columns)
● Gallery of different plot types, some discussion of their properties
● Some notes on how to draw them in Python (more in a notebook)

Types of variables (columns)

Categorical / qualitative

● Nominal: values have no fixed ordering (for example, gender, country, color)
● Ordinal: values are ordered (for example education level primary / secondary

/ university; star ranking 0-5)

Numerical / quantitative

● Discrete: typically counts
● Continuous: typically measurements

Types of variables (columns)

Numerical / quantitative

● Discrete: typically counts
● Continuous: typically measurements

Numerical variables also categorized as follows:

● Ratio (pomerová): if zero means "none", and it is meaningful to compute
ratios / percentages (mass, length, duration, cost, ...)

● Interval: does not have "true zero", we can subtract but not make ratios
(temperature in degrees C, date)

Data for today
● Various country indicators downloaded from the World Bank for years 2000,

2010, 2020
● Population, area, GDP per capita, life expectancy, fertility (number of children

per woman)
● Also classification into regions and income groups
● Which are categorical / numerical?

We will also use Gapminder life expectancy 1990-2021 from I01

Scatter plot
(bodový graf)

Good for two numerical
variables (x and y).

In this plot, many points
near left boundary, most
space empty.

Solution 1: combine
overall view and detail

Solution 2: log scale

Log-scale x-axis: draw at log(x) instead of x, but axis ticks show values of x

Adding a categorical variable with color

Adding a numerical variable with color scale

Adding numerical variable with marker size

Variable value should be proportional to circle area, not diameter!

Adding categorical variable with marker shape

Hard to read, particularly for many data points
Showing population change between 2000 and 2020
If less than 1% change, marked as equal

Line graph (čiarový graf)

Emphasizing continuity between data points
Data points can be also shown as markers

Adding categorical variable with color

Area graph (plošný graf)

Y-axis must start at 0
Emphasizes differences more than line graph, but also more cluttered

Line graph with many lines

Hard to follow individual lines, but shows general trends and comparisons.
Countries with names Si..Sw, and having population at least 1 million.
Note that colors start to repeat.

Small multiples

A small plot for each value of a categorical variable

Must have the same axes!

Exact comparison difficult, but it is possible to notice different trends

Bar graph
(stĺpcový/pruhový
graf)
X-axis is categorical

Y-axis must start at 0

Bar graph with sorted columns

Bar graph with colored columns

Bar graphs can be horizontal

Dot plot
As bar graph but only
dots shown at the top of
the bar

Less clutter

X-axis does not need to
start at 0 - better use of
space

Can use multiple colors

Heatmap
Both axes categorical

Numerical value shown in a color scale

Compact display, but color scales harder
to read

Pie chart (koláčový graf)

Obvious that percentages displayed
Very large values are easy to see (here high income)
Hard to compare similar values to each other
Space use not good

Pie chart with values labeled

Easier to compare but still not ideal
Labeling values also useful in other types of graphs

Stacked (skladaný) bar graph instead of pie chart

Rectangles easier to compare than wedges
Benefits from labeled values
Middle colors hard to compare across bars
Similar idea: stacked area plot (change in percentages over time)

Colored bar graph instead of pie chart

Easy to compare East Asia vs whole world.
Not obvious that we show parts of a whole.

Colored bar graph instead of pie chart

Easy to compare income groups within region

Strip plot
One axis categorical

Other axis shows individual data points

Jitter added in categorical axis to avoid
point overlap

Histogram
For 1D numerical data

Split values into bins, show bin sizes as
bar graph

We could use colors to display 2 or more
histograms

Parallel
coordinates
Good for multidimensional numerical
data

Each column one dimension

Here scaled as % of maximum value

Hard to see individual lines, but can
show trends, compare groups shown
in color or selected data point vs
others

Parallel
categories
Good for multidimensional
categorical data

Each column one dimension

The widths of ribbons
correspond to the number of
countries

Radar chart
(radarový graf)

Hard-to-read version of parallel
coordinates

Perhaps some justification in cyclical
domains, such as average
temperature in months of a year

Now some Python

Overview of libraries
● Matplotlib
● Seaborn: an extension of Matplotlib, convenient for many types of plots
● Plotly: basic usage similar to Seaborn, plots interactive by default

Part of the main table countries

1 Lecture 3b: Source code for plots from Lecture 3a + introduc-
tion to Seaborn and Plotly libraries

Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

This notebook contains the source code for all the plots shown in the first part of the lecture. In
also introduces two new plotting libraries: Seaborn and Plotly.

1.1 Seaborn library
• Seaborn library is an extension of Matplotlib.
• Seaborn is more convenient for many types of plots; we will use it for more complex scatter

plots and line plots, for bar plots, strip plots, histograms and heatmaps.
• In Seaborn functions, a whole DataFrame can be added using option data=. DataFrame

column names are then used as x, y, hue (color), col (one of subfigures).
• Seaborn creates Matplotlib objects (e.g. figure, axes) which can be then modified using Mat-

plotlib methods.
• The first example of this library is in section Categorical variable via color

1.2 Plotly library for interactive plots
• Another popular library is Plotly.
• It provides some additional plot types and all plots are interactive.
• For example, in the scatter plot, we can find information about each dot by hovering a mouse

over it.
• We can also zoom into parts of the plot by selecting a rectangle.
• A menu with additional options appears in the top right corner of the plot.
• Plotly is also used the first time in section Categorical variable via color.

1.3 Used libraries
[1]: import numpy as np

import pandas as pd
from IPython.display import Markdown
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

1.4 Importing World Bank data
Country indicators from World Bank, https://databank.worldbank.org/home under CC BY 4.0
license.

Country population, surface area in km squared, GDP per capita (current US$), life expectancy at
birth (years), fertility rate (births per woman); in years 2000, 2010, 2020.

1

https://bbrejova.github.io/viz/
https://seaborn.pydata.org/tutorial.html
https://plotly.com/python/plotly-express/
https://plotly.com/python/line-and-scatter/

[2]: url = 'https://bbrejova.github.io/viz/data/World_bank.csv'
countries = pd.read_csv(url).set_index('Country')
display(countries)

ISO3 Region Income Group \
Country
Afghanistan AFG South Asia Low income
Albania ALB Europe & Central Asia Upper middle income
Algeria DZA Middle East & North Africa Lower middle income
American Samoa ASM East Asia & Pacific High income
Andorra AND Europe & Central Asia High income
… … … …
Virgin Islands VIR Latin America & Caribbean High income
West Bank and Gaza PSE Middle East & North Africa Upper middle income
Yemen YEM Middle East & North Africa Low income
Zambia ZMB Sub-Saharan Africa Lower middle income
Zimbabwe ZWE Sub-Saharan Africa Lower middle income

Population2000 Population2010 Population2020 Area \
Country
Afghanistan 19542983.0 28189672.0 38972231.0 652860.0
Albania 3089026.0 2913021.0 2837849.0 28750.0
Algeria 30774621.0 35856344.0 43451666.0 2381741.0
American Samoa 58229.0 54849.0 46189.0 200.0
Andorra 66097.0 71519.0 77699.0 470.0
… … … … …
Virgin Islands 108642.0 108356.0 106291.0 350.0
West Bank and Gaza 2922153.0 3786161.0 4803269.0 6020.0
Yemen 18628701.0 24743945.0 32284046.0 527970.0
Zambia 9891135.0 13792087.0 18927715.0 752610.0
Zimbabwe 11834676.0 12839770.0 15669667.0 390760.0

GDP2000 GDP2010 GDP2020 Expectancy2000 \
Country
Afghanistan NaN 562.499219 512.055098 55.298000
Albania 1126.683340 4094.349686 5343.037704 75.404000
Algeria 1780.376063 4495.921476 3354.153164 70.478000
American Samoa NaN 10446.863206 15609.777220 NaN
Andorra 21620.465102 48237.890541 37207.238871 NaN
… … … … …
Virgin Islands NaN 39905.128418 39411.045254 76.619512
West Bank and Gaza 1476.171850 2557.075624 3233.568638 70.388000
Yemen 519.591639 1249.063085 578.512010 62.588000
Zambia 364.026145 1469.361450 956.831729 45.231000
Zimbabwe 565.284390 937.840340 1372.696674 44.686000

Expectancy2010 Expectancy2020 Fertility2000 \

2

Country
Afghanistan 60.851000 62.575000 7.534
Albania 77.936000 76.989000 2.231
Algeria 73.808000 74.453000 2.566
American Samoa NaN NaN NaN
Andorra NaN NaN NaN
… … … …
Virgin Islands 77.865854 79.819512 2.060
West Bank and Gaza 73.004000 74.403000 5.443
Yemen 67.280000 64.650000 6.318
Zambia 56.799000 62.380000 5.926
Zimbabwe 50.652000 61.124000 3.974

Fertility2010 Fertility2020
Country
Afghanistan 6.099 4.750
Albania 1.656 1.400
Algeria 2.843 2.942
American Samoa NaN NaN
Andorra 1.270 NaN
… … …
Virgin Islands 2.300 2.030
West Bank and Gaza 4.383 3.570
Yemen 4.855 3.886
Zambia 5.363 4.379
Zimbabwe 4.025 3.545

[217 rows x 16 columns]

1.5 A simple scatterplot
To create a simple scatterplot, commands from the previous lectures suffice. Note that we divide
GDP by 1000 and add this information to the axis title. This makes the axis easier to read.

[3]: figure, axes = plt.subplots()
axes.plot(countries.GDP2020 / 1000, countries.Expectancy2020, '.')
axes.set_xlabel('GDP per capita (thousands US dollars)')
axes.set_ylabel('Life expectancy (years)')
axes.set_title('Country indicators 2020')
pass

3

1.6 Zooming in
Limits on x axis are set using set_xlim method in order to zoom in on countries with lower GDP.

[4]: # create two subplots
figure, axes = plt.subplots(1, 2, figsize=(10, 5), sharey=True)

the left subplot - full range of data
axes[0].plot(countries.GDP2020 / 1000, countries.Expectancy2020, '.')
axes[0].set_xlabel('GDP per capita (thousands US dollars)')
axes[0].set_ylabel('Life expectancy (years)')
axes[0].set_title('Country indicators 2020')

the right subplot - smaller values of GDP
axes[1].plot(countries.GDP2020 / 1000, countries.Expectancy2020, '.')
axes[1].set_xlabel('GDP per capita (thousands US dollars)')
axes[1].set_ylabel('Life expectancy (years)')
axes[1].set_title('Only GDP per capita < 25000 USD')
axes[1].set_xlim(0, 25)
pass

4

1.7 Log-scale plot
In this plot, the log-scale on the x-axis is switched on by semilogx method; similarly there is
semilogy for the y-axis and loglog for both axes.

[5]: figure, axes = plt.subplots(1, 2, figsize=(10, 5))

linear scale plot
axes[0].plot(countries.GDP2020 / 1000, countries.Expectancy2020, '.')
axes[0].set_xlabel('GDP per capita (thousands US dollars)')
axes[0].set_ylabel('Life expectancy (years)')
axes[0].set_title('Country indicators 2020')

log scale plot
axes[1].plot(countries.GDP2020, countries.Expectancy2020, '.')
axes[1].set_xlabel('GDP per capita (US dollars), logscale')
axes[1].set_ylabel('Life expectancy (years)')
axes[1].set_title('Country indicators 2020')
axes[1].semilogx()
pass

5

1.8 Categorical variable via color
Here we color countries by their region. Seaborn function scatterplot can do this easily via hue
parameter. This function returns Matplotlib axes which can be then modified by familiar methods
such as set_xlabel.

[6]: # create plot using Seaborn
axes = sns.scatterplot(data=countries, x='GDP2020', y='Expectancy2020',

hue='Region')
set plot properties using methods from Matplotlib
axes.set_xlabel('GDP per capita (US dollars), logscale')
axes.set_ylabel('Life expectancy (years)')
axes.set_title('Country indicators 2020')
axes.semilogx()
place legend outside the plot:
axes.legend(bbox_to_anchor=(1.05, 1), loc=2)
pass

• The same plot in Plotly is even easier and interactive.
• Both Plotly and Seaborn automatically label axes with column names, such as GDP2020.
• Here we override such automated labels with longer ones using a dictionary fig_labels.

[7]: # we want to use index (country name) in the figure for tooltip info
therefore we create a temporary table with column Country instead of index
temp_table = countries.reset_index()
how to rename automated axis labels
fig_labels = {'GDP2020':'GDP per capita (US dollars), logscale',

'Expectancy2020':'Life expectancy (years)'}
create Plotly plot, add countyr name to tooltip data
fig = px.scatter(data_frame=temp_table,

x="GDP2020", y="Expectancy2020", color="Region",

6

https://seaborn.pydata.org/generated/seaborn.scatterplot.html

hover_data=['Country'], log_x=True,
labels = fig_labels)

fig.show()

1.9 Numerical variable via color
Seaborn automatically detects if the column used as hue is a categorical or numerical variable. In
the previous graph, regions were used as hue and Seaborn chose a color palette with a different
color for each category. Here we have a numerical variable so a continuous palette with different
shades of pink and purple is used by default. We will discuss color palettes later in the course.

[8]: axes = sns.scatterplot(data=countries, x='GDP2020', y='Expectancy2020',
hue='Fertility2020')

axes.set_xlabel('GDP per capita (US dollars), logscale')
axes.set_ylabel('Life expectancy (years)')
axes.set_title('Country indicators 2020')
axes.semilogx()
pass

1.10 Numerical variable as point size
We will now use the population of each country as the size of each point (also called bubble), and
we will color countries by regions. Sizing points according to the values in a specified table column
is again simple to do in Seaborn using paremeter size in sns.scatterplot. Parameter sizes sets
the minimum and maximum point size to be used. For simplicity, population in millions is added
as a new column to countries.

7

https://seaborn.pydata.org/generated/seaborn.scatterplot.html

[9]: # add a column representing population in millions to table countries
countries['Population'] = countries['Population2020'] / 1e6
create the plot
axes = sns.scatterplot(data=countries,

x='GDP2020', y='Expectancy2020', hue='Region',␣
↪size='Population',

sizes=(5, 400))
set various plot properties
axes.set_xlabel('GDP per capita (US dollars), logscale')
axes.set_ylabel('Life expectancy (years)')
axes.set_title('Country indicators 2020')
axes.semilogx()
axes.legend(bbox_to_anchor=(1.05, 1), loc=2)
pass

1.11 Categorical variable as marker type
• We add a new column named Population change with categories increase, decrease and

same depedning on how the population of a country changed between 2010 and 2020. Category
same is applied to countries with population change less then 1% in either direction.

• This column is created using apply command, which applies a function (here a lambda
expression) to diff Series containing relative change in population.

• This column is then used as argument style in sns.scatterplot. Size of markers is set to
100 (more than default) by argument s. Particular markers are selected by markers argument.

• Note that in the scatterplot we use both columns of countries table and separate Series.

[10]: # compute relative differences in population between years 2010 and 2020
diff = (countries.Population2020 - countries.Population2010) / countries.

↪Population2010
new series with values 'increase', 'decrease' and 'same'
diff_class = diff.apply(lambda x : 'decrease' if x < -0.01

else 'increase' if x > 0.01 else 'same')

8

https://docs.python.org/3/howto/functional.html#small-functions-and-the-lambda-expression
https://docs.python.org/3/howto/functional.html#small-functions-and-the-lambda-expression
https://seaborn.pydata.org/generated/seaborn.scatterplot.html

create plot
axes = sns.scatterplot(data=countries,

x='GDP2020', y='Expectancy2020', hue='Region',
style=diff_class, s=100,
markers={'increase':'^', 'decrease':'v', 'same':'.'})

plot settings
axes.semilogx()
axes.set_xlabel('GDP per capita (US dollars), logscale')
axes.set_ylabel('Life expectancy (years)')
axes.legend(bbox_to_anchor=(1.05, 1), loc=2)
pass

1.12 Importing Gapminder life expectancy
We import life expectancy data provided free by the Gapminder foundation under the CC-BY
license. The data set gives for each year and each country an estimate of how may years would
newborn babies live on average if the trends in mortality of different age groups that were prevailing
in the year of their birth would prevail through their entire life.

[11]: url="https://bbrejova.github.io/viz/data/life_expectancy_years.csv"
life_exp = pd.read_csv(url, index_col=0)
life_exp_years = life_exp.iloc[:, 1:]
display(life_exp)

ISO3 1900 1901 1902 1903 1904 1905 1906 1907 \
Country
Afghanistan AFG 29.4 29.5 29.5 29.6 29.7 29.7 29.8 29.9
Albania ALB 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4
Algeria DZA 30.2 30.3 30.4 31.4 25.4 28.1 29.6 29.5
Angola AGO 29.0 29.1 29.2 29.3 29.3 29.4 29.4 29.5
Antigua and Barbuda ATG 33.8 33.8 33.8 33.8 33.8 33.8 33.8 33.8
… … … … … … … … … …
Venezuela VEN 32.4 32.4 32.4 32.4 32.4 32.4 32.5 32.5
Vietnam VNM 31.2 31.1 31.1 31.1 31.1 31.0 31.0 31.0

9

https://www.gapminder.org/data/

Yemen YEM 23.5 23.5 23.5 23.5 23.5 23.6 23.6 23.6
Zambia ZMB 33.6 33.6 33.6 33.7 33.7 33.8 33.8 33.8
Zimbabwe ZWE 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1

1908 … 2012 2013 2014 2015 2016 2017 2018 \
Country …
Afghanistan 29.9 … 60.8 61.3 61.2 61.2 61.2 63.4 63.081
Albania 35.4 … 77.8 77.9 77.9 78.0 78.1 78.2 79.184
Algeria 29.5 … 76.8 76.9 77.0 77.1 77.4 77.7 76.066
Angola 29.6 … 61.3 61.9 62.8 63.3 63.8 64.2 62.144
Antigua and Barbuda 33.8 … 76.7 76.8 76.8 76.9 77.0 77.0 78.511
… … … … … … … … … …
Venezuela 32.5 … 75.2 75.2 75.0 75.0 75.3 75.3 71.979
Vietnam 30.9 … 73.8 74.0 74.1 74.3 74.4 74.5 73.976
Yemen 23.6 … 68.3 68.9 69.0 68.6 68.1 68.1 64.575
Zambia 33.9 … 58.8 60.0 61.1 62.0 62.8 63.2 62.342
Zimbabwe 34.2 … 54.9 56.8 58.5 59.6 60.5 61.4 61.414

2019 2020 2021
Country
Afghanistan 63.565 62.575 61.982
Albania 79.282 76.989 76.463
Algeria 76.474 74.453 76.377
Angola 62.448 62.261 61.643
Antigua and Barbuda 78.691 78.841 78.497
… … … …
Venezuela 72.161 71.095 70.554
Vietnam 74.093 75.378 73.618
Yemen 65.092 64.650 63.753
Zambia 62.793 62.380 61.223
Zimbabwe 61.292 61.124 59.253

[184 rows x 123 columns]

1.13 A simple line graph
Here we use plot from matplotlib to plot life expectancy over the years for Slovakia. Years are
column names which need to be converted from string to integer using Python list comprehension.

[12]: # list of numerical years from column names
years = [int(x) for x in life_exp_years.columns]
simple plot for one row of the table
figure, axes = plt.subplots()
axes.plot(years, life_exp_years.loc['Slovak Republic'])
plot settings
axes.set_xlabel('Year')
axes.set_ylabel('Life expectancy (years)')
axes.set_title('Life expectancy in Slovakia')

10

pass

1.14 A line graph with multiple lines
Here we plot two lines, each by a separate call to plot. Each line has a label to show in the legend.

[13]: figure, axes = plt.subplots()
plot two lines
axes.plot(years, life_exp_years.loc['Slovak Republic'], label='Slovakia')
axes.plot(years, life_exp_years.loc['France'], label='France')
plot settings
axes.set_xlabel('Year')
axes.set_ylabel('Life expectancy (years)')
axes.set_title('Life expectancy in Slovakia and France')
axes.legend()
pass

11

1.15 Area graph
Here we fill in the area between x-axis (value 0) and a table row using fill_between method.
France is plotted on top and is set to be semi-transparent using alpha=0.5.

[14]: figure, axes = plt.subplots()
two filled areas, the second is semi-transparent
axes.fill_between(years, 0, life_exp_years.loc['Slovak Republic'],␣

↪label='Slovakia')
axes.fill_between(years, 0, life_exp_years.loc['France'], label='France',␣

↪alpha=0.5)
plot settings
axes.set_xlabel('Year')
axes.set_ylabel('Life expectancy (years)')
axes.set_title('Life expectancy in Slovakia and France')
axes.legend(bbox_to_anchor=(1.05, 1), loc=2)
pass

12

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.fill_between.html

1.16 Line graph with many lines
• Here we want to plot lines for all countries alphabetically between Si and Sz and having at

least million inhabitants.
• First we select such countries from countries to table selection.
• Using intersection, we get only countries from our selection that are also in Gapminder

table (life_exp).
• Part of the Gapminder table for these coutnries is then stored as life_exp_sel.

[15]: selection = countries.query('Population2020 > 1e6 and Country >= "Si" and␣
↪Country <= "Sz"')

life_exp_iso3 = life_exp.reset_index().set_index('ISO3')
life_exp_sel = life_exp_iso3.loc[life_exp_iso3.index.intersection(selection.

↪ISO3), :].set_index('Country')
display(life_exp_sel)

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 \
Country
Sierra Leone 27.4 27.5 27.5 27.6 27.7 27.8 27.9 27.9 28.0 28.1
Singapore 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2
Slovak Republic 37.9 38.2 38.5 38.8 39.1 39.4 39.7 40.0 40.3 40.6
Slovenia 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4
Somalia 31.2 31.2 31.3 31.4 31.4 31.5 31.5 31.6 31.7 31.7
South Africa 34.5 34.5 34.5 34.6 34.6 34.6 34.6 34.7 34.7 34.8
South Sudan 29.6 29.6 29.8 29.8 29.9 30.0 30.1 30.2 30.3 30.4
Spain 34.7 35.6 36.4 37.2 38.0 38.9 39.7 40.5 41.4 41.0
Sri Lanka 32.5 32.5 32.5 33.9 34.7 32.4 26.9 30.0 30.4 29.8
Sudan 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5
Sweden 52.3 52.9 54.7 55.1 55.4 54.5 56.7 57.0 56.4 58.4
Switzerland 47.5 49.0 50.5 50.1 49.2 49.7 50.8 51.3 52.3 51.7
Syria 31.8 31.8 31.9 31.9 31.9 31.9 31.9 32.0 32.0 32.0

13

… 2012 2013 2014 2015 2016 2017 2018 \
Country …
Sierra Leone … 56.9 57.9 57.1 58.5 59.8 60.4 59.796000
Singapore … 83.6 83.9 84.2 84.4 84.7 84.8 83.297561
Slovak Republic … 76.2 76.6 76.8 76.7 77.2 77.4 77.265854
Slovenia … 79.9 80.2 80.9 80.8 81.0 81.1 81.378049
Somalia … 56.8 57.4 57.9 58.3 58.5 58.5 56.375000
South Africa … 59.5 61.1 62.5 63.4 64.4 66.3 65.674000
South Sudan … 58.2 58.0 58.3 59.4 59.4 59.3 55.950000
Spain … 82.3 82.6 82.7 82.6 82.9 83.1 83.431707
Sri Lanka … 76.1 76.4 76.5 76.9 77.2 77.5 75.748000
Sudan … 68.4 68.7 69.1 69.6 69.8 70.3 65.681000
Sweden … 81.8 81.9 82.1 82.2 82.4 82.5 82.558537
Switzerland … 82.9 83.0 83.3 83.5 83.8 84.0 83.753659
Syria … 67.9 68.7 65.0 67.3 67.4 69.8 70.145000

2019 2020 2021
Country
Sierra Leone 60.255000 59.763000 60.062000
Singapore 83.595122 84.465854 83.441463
Slovak Republic 77.665854 76.865854 74.714634
Slovenia 81.529268 80.531707 80.875610
Somalia 57.078000 55.967000 55.280000
South Africa 66.175000 65.252000 62.341000
South Sudan 55.912000 55.480000 54.975000
Spain 83.831707 82.331707 83.178049
Sri Lanka 76.008000 76.393000 76.399000
Sudan 65.876000 65.614000 65.267000
Sweden 83.109756 82.356098 83.156098
Switzerland 83.904878 83.000000 83.851220
Syria 71.822000 72.140000 72.063000

[13 rows x 122 columns]

• In Matplotlib, each country from life_exp_sel is plotted separately in a for-loop, similarly
as for two countries above.

• Note that colors repeat because the default palette is not large enough.

[16]: figure, axes = plt.subplots()
loop over countries
for country in life_exp_sel.index:

axes.plot(years, life_exp_sel.loc[country], label=country)

plot settings
axes.set_xlabel('Year')
axes.set_ylabel('Life expectancy (years)')
axes.set_title('Life expectancy in selected countries')

14

axes.legend(bbox_to_anchor=(1.05, 1), loc=2)
pass

• To use Seaborn for the same plot, it is better to change life_exp_sel table from wide to
long format using melt method. Year is converted from strings to integers.

• This creates a table with columns Country, Year, Expectancy.

[17]: life_exp_sel_long = (
life_exp_sel.reset_index()
.melt(id_vars=['Country'])
.rename(columns={'variable':'Year', 'value':'Expectancy'})
.astype({'Year':'int32'})

)
display(life_exp_sel_long)

Country Year Expectancy
0 Sierra Leone 1900 27.400000
1 Singapore 1900 34.200000
2 Slovak Republic 1900 37.900000
3 Slovenia 1900 36.400000
4 Somalia 1900 31.200000
… … … …
1581 Sri Lanka 2021 76.399000
1582 Sudan 2021 65.267000
1583 Sweden 2021 83.156098
1584 Switzerland 2021 83.851220
1585 Syria 2021 72.063000

[1586 rows x 3 columns]

• Now we use Seaborn function relplot, setting parameters x, y and hue to column names in
our long table and specifying that we want lineplit using kind="line".

15

https://seaborn.pydata.org/generated/seaborn.relplot.html

• The function returns FacetGrid, which potentially contains multiple axes, so we ned to use
slightly different methods to set labels.

• Seaborn created a sufficiently large color palette but some colors are then hard to distinguish.

[18]: grid = sns.relplot(data=life_exp_sel_long, x='Year', y='Expectancy',
hue='Country', kind="line")

grid.set_axis_labels('Year', 'Life expectancy (years)')
grid.set(title='Life expectancy in selected countries')
pass

1.17 Small multiples
• Small multiples, with each country in our selection as a separate plot, is very easy to do in

Seaborn from a long-format table using relplot, using column Country in option col which
selects one of subplots for each data point.

• Option col_wrap selects how many subplots will be placed ion one row of the overall figure.

[19]: # create grid of small multiple plots
sns.set_theme(font_scale=1.2)
grid = sns.relplot(data=life_exp_sel_long,

x='Year', y='Expectancy', col='Country',
col_wrap=5, kind="line", height=3, aspect=1)

grid.set_axis_labels('Year', 'Life expectancy (years)')
grid.set_titles("{col_name}") # title of each plot will be country name
pass

16

1.18 Bar graph
• We plot a bargraph of life expectancy in our selected countries by Seaborn function barplot.
• All bars are plotted by the same color using setting color="C0".
• We rotate tick labels on the x axes to fit them in the given space.

[20]: def rotate_bar_labels(axes, angle=45):
"""Auxiliary function for rotating bar plot labels by 45 degrees"""
axes.tick_params(axis='x', labelrotation=angle, pad=-5)
plt.setp(axes.get_xticklabels(), ha='right')

select one year from the long table
life_exp_sel_2020 = life_exp_sel_long.query('Year==2020')
create barplot
axes = sns.barplot(data=life_exp_sel_2020,

x='Country', y='Expectancy', color="C0")
axes.set_ylabel("Life expectancy in 2020")
axes.set_xlabel(None)
rotate_bar_labels(axes)
pass

17

https://seaborn.pydata.org/generated/seaborn.barplot.html

1.19 Bar graph with sorted columns
Countries are sorted by value in preprocessing, then plotted as before.

[21]: # sorting
life_exp_sel_2020_sorted = life_exp_sel_2020.sort_values('Expectancy')
plotting
axes = sns.barplot(data=life_exp_sel_2020_sorted,

x='Country', y='Expectancy', color="C0")
axes.set_ylabel("Life expectancy in 2020")
axes.set_xlabel(None)
rotate_bar_labels(axes)
pass

18

1.20 Bar graph with multiple colors
• Now we compare life expectancy in two years in a bargraph with tho colors of columns.
• After selecting appropriate rows of the long table, we use column Year in the hue parameter

of barplot.

[22]: # select only years 2000 and 2020 from the table, sort
life_exp_sel_comp = life_exp_sel_long.query('Year==2020 or Year==2000').

↪sort_values('Expectancy')
plotting
axes = sns.barplot(data=life_exp_sel_comp, x='Country', y='Expectancy',␣

↪hue='Year')
axes.set_xlabel(None)
rotate_bar_labels(axes)
pass

19

1.21 Horizontal bar graph
• Longer bar labels are easier to read in a horizontal barplot.
• In Seaborn, it is sufficent to switch x and y arguments.

[23]: axes = sns.barplot(data=life_exp_sel_2020_sorted,
y='Country', x='Expectancy', color="C0")

axes.set_xlabel("Life expectancy in 2020")
axes.set_ylabel(None)
pass

20

1.22 Dot plot
• Dot plot shows only the end of each bar as a dot.
• Seaborn’s pointplot joins these dots by lines by default, linestyle='none' prevents this.
• Note that in contrast to barplots, the x axis does not start at 0 (we could make it so by

set_xlim).

[24]: axes = sns.pointplot(data=life_exp_sel_2020_sorted,
y='Country', x='Expectancy',
color="C0", linestyle='none')

axes.set_xlabel("Life expectancy in 2020")
axes.set_ylabel(None)
pass

1.23 Heatmap
• The goal is to create heatmap with countries as rows, several years as columns and life

expectancy values as colors.
• We first need to create a DataFrame with these values in such an arrangment by selecting

rows with appropriate years from our long table and pivoting the table by year to make it
wide.

• Finally we sort the table by the expectancy in the last year.

[25]: # set of years to be used
sel_years={2000, 2005, 2010, 2015, 2020}
create desired wide table
life_exp_sel_wide = (life_exp_sel_long.query('Year in @sel_years')

.pivot(index='Country', columns='Year',␣
↪values='Expectancy')

.sort_values(2020, ascending=False))
show the table

21

https://seaborn.pydata.org/generated/seaborn.pointplot.html

display(life_exp_sel_wide)

Year 2000 2005 2010 2015 2020
Country
Singapore 79.3 81.1 83.2 84.4 84.465854
Switzerland 80.1 81.5 82.5 83.5 83.000000
Sweden 79.8 80.6 81.5 82.2 82.356098
Spain 79.4 80.5 82.0 82.6 82.331707
Slovenia 76.0 77.7 79.5 80.8 80.531707
Slovak Republic 73.5 74.3 75.6 76.7 76.865854
Sri Lanka 71.6 73.8 74.7 76.9 76.393000
Syria 72.5 75.0 75.8 67.3 72.140000
Sudan 63.4 65.7 67.7 69.6 65.614000
South Africa 55.6 52.0 56.1 63.4 65.252000
Sierra Leone 50.9 52.6 55.4 58.5 59.763000
Somalia 52.5 54.7 55.0 58.3 55.967000
South Sudan 54.4 56.7 57.8 59.4 55.480000

• Heatmap is plotted by sns.heatmap function.
• We have used options to set the shape of individual cells to square and change the color

palette (‘cmap’).

[26]: axes = sns.heatmap(data=life_exp_sel_wide, square=True, cmap="YlOrBr")
axes.set_ylabel(None)
pass

22

https://seaborn.pydata.org/generated/seaborn.heatmap.html

1.24 Pie chart
• To prepare data for pie chart, we use two features of Pandas which we will cover in a later

lecture: converting the Income Group column to a categorical type and computing the number
of countries in various income groups using groupby.

• In this way we create two Series: groups with counts for the whole world and groups_asia
for just East Asian countries.

[27]: # creating a categorical type
income_categories = ["Low income", "Lower middle income",

"Upper middle income", "High income"]
cat_type = pd.api.types.CategoricalDtype(categories=income_categories,

ordered=True)
converting Income Group column to cat_type
countries_cat = countries.astype({'Income Group': cat_type})
aggregation using groupby
groups = countries_cat.groupby('Income Group').size().rename('Count')
the same but only on countries selected by query
groups_asia = (countries_cat.query('Region=="East Asia & Pacific"')

.groupby('Income Group').size().rename('Count'))

23

display(groups)

Income Group
Low income 26
Lower middle income 54
Upper middle income 54
High income 82
Name: Count, dtype: int64

• The plotting is done by the pie function from Matplotlib.
• It gets the series with counts as parameter x and country names as labels.

[28]: figure, axes = plt.subplots(1,2, figsize=(10,5))
axes[0].pie(x=groups, labels=groups.index)
axes[0].set_title('Whole world\n(the number of countries)')
axes[1].pie(x=groups_asia, labels=groups_asia.index)
axes[1].set_title('East Asia & Pacific\n(the number of countries)')
figure.subplots_adjust(wspace=1)
pass

1.25 Pie chart with labels
• Labels are added by autopct setting in pie. This setting provides a formatting string for the

values, here we print one decimal place.

[29]: figure, axes = plt.subplots(1,2, figsize=(10,5))
axes[0].pie(x=groups, labels=groups.index, autopct="%.1f%%")
axes[0].set_title('Whole world\n(number of countries)')
axes[1].pie(x=groups_asia, labels=groups_asia.index, autopct="%.1f%%")
axes[1].set_title('East Asia & Pacific\n(number of countries)')
figure.subplots_adjust(wspace=1)
pass

24

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pie.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pie.html
https://docs.python.org/3/tutorial/inputoutput.html#old-string-formatting

1.26 Stacked bar graph instead of pie chart
• To prepare data for stacked bar graph, we need to combine our two count Series (groups and

groups_asia) to one long table groups_concat.
• This is a DataFrame, because Income Group was moved from index to a column.
• We also add percentage column, which will be used in the plot. Percentage is computed by

divided counts with the sum of all counts.
• We also add a column with region name, because we will consider two regions (East Asia and

the whole world).

[30]: # first create DataFrame for East Asia
add Income Group index as a column
temp_asia = groups_asia.reset_index()
compute percentages and add as a new column
temp_asia['Percentage'] = temp_asia['Count'] * 100 / temp_asia['Count'].sum()
add Region as a new column, filled with copies of the same string
temp_asia['Region'] = ["East Asia & Pacific"] * len(groups_asia)

the same three steps for World
temp_world = groups.reset_index()
temp_world['Percentage'] = temp_world['Count'] * 100 / temp_world['Count'].sum()
temp_world['Region'] = ["World"] * len(groups)

concatenate two DataFrames and display
groups_concat = pd.concat([temp_asia, temp_world], axis=0)
display(groups_concat)

Income Group Count Percentage Region
0 Low income 1 2.702703 East Asia & Pacific
1 Lower middle income 13 35.135135 East Asia & Pacific
2 Upper middle income 9 24.324324 East Asia & Pacific
3 High income 14 37.837838 East Asia & Pacific
0 Low income 26 12.037037 World
1 Lower middle income 54 25.000000 World
2 Upper middle income 54 25.000000 World
3 High income 82 37.962963 World

• Stacked bar graph is not very automated in Matplotib.

25

• Left coordinate for each rectangle needs to be computed manually, then function barh is used
(see also tutorial).

• Each bar is labeled with the percentage using bar_label function.

[31]: # list of regions and income groups
tmp_regions = groups_concat['Region'].unique()
tmp_groups = groups_concat['Income Group'].unique()
the first rectangles start at 0
starts = pd.Series([0] * tmp_regions.shape[0])
create plot
figure, axes = plt.subplots()

iterate through income groups
for group in tmp_groups:

select data for this income group from both regions
tmp_data = groups_concat.query("`Income Group` == @group")
plot
rectangles = axes.barh(y=tmp_data['Region'], width=tmp_data['Percentage'],␣

↪left=starts, label=group)
add labels
axes.bar_label(rectangles, label_type='center', fmt="%.0f%%")
move starts by the size of each rectangle
starts += tmp_data['Percentage'].reset_index(drop=True)

axes.legend(bbox_to_anchor=(1, 1), loc=2)
hide plot frame and x-axis ticks
axes.xaxis.set_visible(False)
axes.set_frame_on(False)
pass

• Stacked bar charts are much easier in Plotly using px.bar function.

[32]: fig = px.bar(groups_concat, x="Region", y="Percentage", color="Income Group",
text="Percentage", text_auto=".0f")

fig.update_layout(font=dict(size=20), xaxis_title=None,)
fig.show()

26

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.barh.html#matplotlib.axes.Axes.barh
https://matplotlib.org/stable/gallery/lines_bars_and_markers/horizontal_barchart_distribution.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.bar_label.html#matplotlib.axes.Axes.bar_label
https://plotly.com/python-api-reference/generated/plotly.express.bar

It can also be drawn easily directly by Pandas, but values (sizes of rectangles) are not shown. The
table is first converted toa wide form with different income groups as columns.

[33]: groups_concat_wide = groups_concat.pivot(columns='Income Group',␣
↪index='Region', values='Percentage')

display(groups_concat_wide)
axes = groups_concat_wide.plot(kind='barh', stacked=True)
axes.legend(bbox_to_anchor=(1, 1), loc=2)
axes.set_ylabel(None)
axes.set_xlabel('Percentage of the number of countries')
pass

Income Group Low income Lower middle income Upper middle income \
Region
East Asia & Pacific 2.702703 35.135135 24.324324
World 12.037037 25.000000 25.000000

Income Group High income
Region
East Asia & Pacific 37.837838
World 37.962963

1.27 Colored bar graphs insteads of pie chart
• As we have seen before, colored bar graphs are easy in Seaborn from a long table.
• Therefore we use groups_concat DataFrame.

[34]: axes = sns.barplot(data=groups_concat,
x='Income Group', y='Percentage', hue='Region')

rotate_bar_labels(axes)
axes.set_xlabel(None)
axes.set_ylabel("Percentage of countries")
pass

27

1.28 Multiple bar graphs instead of pie chart
• In the next plot a separte bar graph for each region.
• This is also very simple in Seaborn using catplot with setting col='Region' and

kind='bar'.
• Labels are rotated in each subplot using a for-loop.

[35]: grid = sns.catplot(kind='bar', data=groups_concat,
x='Income Group', y='Percentage',
col='Region', hue='Income Group')

label rotation
for which in [0,1]:

rotate_bar_labels(grid.axes[0,which])
grid.axes[0,which].set_xlabel(None)
grid.axes[0,which].set_ylabel("Percentage of countries")

pass

28

https://seaborn.pydata.org/generated/seaborn.catplot.html

1.29 Strip plot
• Strip plot of fertility per region is also very simple in sns.catplot.
• Setting kind='strip' is default for catplot, so it is omitted here.
• Size of dots is reduced to limit overlapping markers.

[36]: grid = sns.catplot(x="Fertility2020", y="Region", data=countries, size=3)
grid.set_axis_labels("Fertility in 2020", "")
pass

29

https://seaborn.pydata.org/generated/seaborn.catplot.html

1.30 Histogram

[37]: grid = sns.displot(countries, x="Fertility2020", binwidth=0.5)
grid.set_axis_labels("Fertility 2020", "The number of countries")
pass

1.31 Parallel coordinates
• We want to display varipus properties of individual countries as parallel coordinate plot.
• We first create table for_parallel with selected columns and express all numbers as per-

centage of the maximum value.
• We add selected column which has True in row for Slovakia and False elsewhere. This is

used to highlight Slovakia in the plot.
• Also ordering is changed to draw Slovakia the last.

[38]: # selecting columns
for_parallel_sel = countries.loc[:, ['Population2020', 'Area', 'GDP2020',

'Expectancy2020', 'Fertility2020']]
computing maximum in each column
for_parallel_max = for_parallel_sel.max(axis=0)
dividing values by the maximum and multiplying by 100 to get percentage
for_parallel = for_parallel_sel.div(for_parallel_max, axis=1) * 100

30

creating column of booleans called 'selected' which highlights Slovakia with␣
↪True

for_parallel['selected'] = countries.index=="Slovak Republic"
sort by 'selected' to put Slovakia last
for_parallel.sort_values('selected', inplace=True)
show end of the table
display(for_parallel.tail())

Population2020 Area GDP2020 Expectancy2020 \
Country
Greece 0.758174 0.771775 9.651333 95.076168
Greenland 0.003995 2.400538 29.962671 83.788155
Fiji 0.065227 0.106853 2.638193 79.445541
Zimbabwe 1.110458 2.285380 0.752009 71.492098
Slovak Republic 0.386849 0.286754 10.711280 89.904148

Fertility2020 selected
Country
Greece 20.168311 False
Greenland 29.294835 False
Fiji 36.201393 False
Zimbabwe 51.436448 False
Slovak Republic 23.070226 True

• Parallel coordinates are drawn using Pandas parallel_coordinates function, which inter-
nally calls Matplotlib and returns Axes object.

[39]: axes = pd.plotting.parallel_coordinates(for_parallel, class_column='selected',
color=['gray', 'red'])

axes.get_legend().remove()
axes.set_ylabel("Percentange of maximum")
axes.set_title("Slovakia compared to other countries")
rotate_bar_labels(axes, angle=30)
pass

31

https://pandas.pydata.org/docs/reference/api/pandas.plotting.parallel_coordinates.html

1.32 Parallel categories
• We will use two categorical columns from the countries table, but more categorical columns

could be easily added.
• We use the version of the table with a categorical income groups and sort countries by income.
• Now we use parallel-categories function from Plotly.
• This function orders each column of the figure by size. By calling update_traces, we reorder

the first column by the same order as they first occur in our table.

[40]: for_parallel_cat = (countries_cat.loc[:,['Income Group','Region']]
.sort_values('Income Group', ascending=False))

fig = px.parallel_categories(for_parallel_cat, width=800)
fig.update_traces(dimensions=[{"categoryorder": "array"}, {}])
fig.update_layout(font_size=20)
fig.update_layout(margin={'l':200,'r':200})
fig.show()

1.33 Radar chart
• Radar charts are not well supported in any of the used libraries.
• Below we compute angles of each axis manually, then use plot from Matplotlib.
• When creating axes, we specify polar coordinates subplot_kw={'projection': 'polar'}.
• We also use set_thetagrids

[41]: # skip 'selected' column, use only 3 countries
for_radar = for_parallel.loc[['India','China','United States'], :].iloc[:, 0:-1]
display(for_radar.head())

32

https://plotly.com/python/parallel-categories-diagram/
https://matplotlib.org/stable/api/projections/polar.html#matplotlib.projections.polar.PolarAxes.set_thetagrids

setup plot with polar coordinates
sns.set_theme(style="whitegrid")
figure, axes = plt.subplots(subplot_kw={'projection': 'polar'})
categories = list(for_radar.columns)
import math
angles = [i * 2 * math.pi / len(categories) for i in range(len(categories))]
angles_deg = [x / math.pi * 180 for x in angles]
axes.set_thetagrids(angles_deg, labels=categories)

for plotting, we will need to return to starting point in each line
angles.append(angles[0])

for each country create list of values, add the starting point, plot
for country in for_radar.index:

values = list(for_radar.loc[country, :])
values.append(values[0])
axes.plot(angles, values, label=country)

axes.legend(bbox_to_anchor=(1.05, 1), loc=2)
pass

Population2020 Area GDP2020 Expectancy2020 \
Country
India 98.957347 19.225710 1.048125 82.049124
China 100.000000 55.929174 5.702240 91.320734
United States 23.493127 57.500095 34.803081 90.038227

Fertility2020
Country
India 29.759141
China 18.586767
United States 23.817470

33

34

Lecture 4
Summary statistics

Data visualization · 1-DAV-105
Lecture by Broňa Brejová

More details in the notebook version

https://bbrejova.github.io/viz/
https://colab.research.google.com/github/bbrejova/viz/blob/master/notebooks/L04_Summary_statistics.ipynb

Introduction
Summary statistics (popisné charakteristiky / štatistiky):
quantities that summarize basic properties of a single variable (a table column),
such as the mean.

We can also characterize dependencies between pairs of variables.

Together with simple plots, they give us the first glimpse at the data
when working with a new data set.

Data set for today
● The same data set as in group tasks 04.
● The data set describes 2049 movies.
● Originally downloaded from

https://www.kaggle.com/rounakbanik/the-movies-dataset and preprocessed,
keeping only movies with at least 500 viewer votes.

Measures of central tendency (miery stredu / polohy)
These represent a typical value in a sample 𝑥 = 𝑥1,…,𝑥𝑛 (one numerical column).

Mean (priemer)
This is the arithmetic mean, there are also geometric and harmonic means.

Median (medián) is the middle value when the values ordered by size.
For even 𝑛 usually defined as the average of the two middle values.
Example:
Median of 10, 12, 15, 16, 16 is 15.
Median of 10, 12, 15, 16, 16, 20 is 15.5.

Measures of central tendency (cont.)
● Mean (priemer)
● Median (medián)
● Mode (modus) is the most frequent value (for a discrete variable).

Mode of 10,12,15,16,16 is 16.
For continuous variables, we may look for a mode in a histogram.
This is sensitive to bin size.

https://commons.wikimedia.org/wiki/File:Visualisation_mode_median_mean.svg

https://commons.wikimedia.org/wiki/File:Visualisation_mode_median_mean.svg

Properties of the measures
If we apply linear transformation 𝑎⋅𝑥𝑖+𝑏 with the same 𝑎 and 𝑏 to all 𝑥𝑖,
mean, median and mode will be transformed in the same way.

This corresponds e.g. to the change in the units of measurement
 (grams vs kilograms, degrees C vs degrees F)

Mean can be heavily influenced by outliers
800, 1000, 1100, 1200, 1800, 2000, 30000: mean 5414.3, median 1200
800, 1000, 1100, 1200, 1800, 2000, 10000: mean 2557.1, median 1200

Therefore we often prefer median (e.g. median salary).

Computation in Pandas

Shown in a histogram (whole and detail)

What causes the difference between the mean and the median?

Summarizing many columns or rows
● Functions mean and median can be applied to all numerical columns
● With axis=1 we get means or medians in rows

Quantiles, percentiles and quartiles
(kvantily, percentily, kvartily)

Median is the middle value in a sorted order;
about 50% of values are smaller and 50% larger.

For a percentage 𝑝, the 𝑝-th percentile is at position roughly (𝑝/100)⋅𝑛 in the
sorted order of values.

Similarly quantile (in Pandas), but we give fraction between 0 and 1 rather than
percentage.

Quartiles are three values 𝑄1, 𝑄2 and 𝑄3 that split input data into quarters.
Therefore, 𝑄2 is the median.

Quantiles in Pandas

Quartiles in a histogram (whole and detail)

Quantile interpolation
Optional parameter interpolation accepts values ‘linear’ (default),
‘lower’, ‘higher’, ‘midpoint’, ‘nearest’.

Minimum is at quantile 0, maximum at quantile 1, the rest evenly spaced between.

The quantile between two elements is influenced only by its two neighbors.

Example: list [0,10,20,100]
p=0: 0, p=1/3: 10, p=2/3: 20, p=1: 100
p=1/4: by default linear interpolation at 3/4 between 0 and 10, i.e. 7.5.

Linear interpolation is continuous as p changes from 0 to 1.

Quantile interpolation

Measures of variability (miery variability)
Values in the sample may be close to central values or spread widely.

Examples of measures:

Range of values from minimum to maximum (sensitive to outliers).

Interquartile range IQR (kvartilové rozpätie): range between 𝑄1 and 𝑄3
(contains the middle half of the data).

Variance and standard deviation (next)

Variance (rozptyl)
For each 𝑥𝑖 square its difference from the mean

Squaring gives non-negative values (and squares are easier to work with
mathematically than absolute values).

Variance is the mean of these squares, but we divide by 𝑛−1 rather than 𝑛:

Division by 𝑛 would underestimate the true variance of the underlying population
(more in the statistics course).

Standard deviation (smerodajná odchýlka)
Square root of the variance

It is in the same units as the original values
(variance is in units squared).

Recall:

Properties
Larger variance and standard deviation mean that data are spread farther from the
mean.

If we apply linear transformation 𝑎⋅𝑥𝑖+𝑏 with the 𝑎 and 𝑏 to all 𝑥𝑖:
Neither variance nor standard deviation change with 𝑏.
Variance is multiplied by 𝑎2, standard deviation by |𝑎|.

These measures are strongly influenced by outliers:
800, 1000, 1100, 1200, 1800, 2000, 30000: st. dev. 10850.0, IQR 850
800, 1000, 1100, 1200, 1800, 2000, 10000: st. dev. 3310.5, IQR 850.

Outliers (odľahlé hodnoty)
Outliers are the values which are far from the typical range of values.

In data analysis, it is important to check outliers.

If they represent errors, we may try to correct or remove them.

They can also represent interesting anomalies.

Different definitions of outliers may be appropriate in different situations.

One possible definition of outliers
The criterion by statistician John Tukey:

Outliers are the values outside of the range [𝑄1 − 𝑘 ⋅ 𝐼𝑄𝑅, 𝑄3 + 𝑘 ⋅ 𝐼𝑄𝑅],
e.g. for 𝑘 = 1.5.

In our example 800, 1000, 1100, 1200, 1800, 2000, 30000:
𝑄1 = 1050, 𝑄3 = 1900, 𝐼𝑄𝑅 = 850.
𝑄1 − 1.5 ⋅ 𝐼𝑄𝑅 = −225, 𝑄3 + 1.5 ⋅ 𝐼𝑄𝑅 = 3175.

Outliers are values smaller than −225 or larger than 3175; here only 30000.

The range of outliers is not influenced if we change the outliers.

Computation in Pandas

Boxplot (krabicový graf)
Developed by Mary Eleanor Hunt Spear and John Tukey.

It shows the five-number summary: min, 𝑄1, median (𝑄2), 𝑄3, max

𝑄1 and 𝑄3: a box, median: line through box, min and max: whiskers
Outliers often excluded from the whiskers and shown as points.

Boxplots are used for quick comparison

For small datasets we may add strip plot
Works well for
smaller
languages,
mess for en.

What do we see
for sv, pt, th, hi,
nb, id?

Code for the plot

Quick overview of a data set: describe in Pandas

Correlation (korelácia)
We are often interested in relationships among variables (data columns).

Next: two correlation coefficients that measure strength of such relationships.

Beware: correlation does not imply causation

Correlation does not imply causation
If electricity consumption grows in a very cold weather, there might be
cause-and-effect relationship: the cold weather is causing people to use more
electricity for heating.

If healthier people tend to be happier, which is the cause and which is effect?

Both studied variables can be also influenced by some third, unknown factor.
For example, within a year, deaths by drowning increase with increased ice cream
consumption. Both increases are spurred by warm weather.

The observed correlation can be just a coincidence,
see the Redskins rule and a specialized webpage Spurious Correlations.
You can easily find such "coincidences" by comparing many pairs of variables.

https://en.wikipedia.org/wiki/Redskins_Rule
http://www.tylervigen.com/spurious-correlations

Pearson correlation coefficient
It measures linear relationship between two variables.

Consider pairs of values (𝑥1,𝑦1),…,(𝑥𝑛,𝑦𝑛), where (𝑥𝑖,𝑦𝑖) are two different features of
the same object.

where 𝑠𝑥 is the standard deviation of variable 𝑥.

Pearson correlation coefficient

Expression is called the standard score or z-score:
how many standard deviations above or below the mean is 𝑥𝑖?

The product of z-scores for 𝑥𝑖 and 𝑦𝑖 is positive
iff they lie on the same side of the respective means of 𝑥 and 𝑦.

Properties of Pearson correlation coefficient
The value of 𝑟 is always from interval [−1,1].
 1 if 𝑦 grows linearly with 𝑥,
-1 if 𝑦 decreases linearly
0 means no correlation.

https://commons.wikimedia.org/wiki/File:Correlation_coefficient.png

https://commons.wikimedia.org/wiki/File:Correlation_coefficient.png

Some cautions
Pearson correlation measures only linear relationships (bottom row)
Pearson correlation does not depend on the slope of the best-fit line (middle row)

https://commons.wikimedia.org/wiki/File:Correlation_examples2.svg

https://commons.wikimedia.org/wiki/File:Correlation_examples2.svg

Properties of Pearson correlation
What if we linearly scale each variable, i.e. 𝑎𝑥𝑖+𝑏, 𝑐𝑦𝑖+𝑑?
What if a>0, a=0, a<0?

What if we switch x and y?

Properties of Pearson correlation
Pearson correlation does not change if we linearly scale each variable,
i.e. 𝑎𝑥𝑖+𝑏, 𝑐𝑦𝑖+𝑑 (for 𝑎,𝑐>0).

Pearson correlation is symmetric wrt. 𝑥 and 𝑦.

Due to reliance on mean and std.dev. it is sensitive to outliers.

Linear regression
The process of finding the line best representing the relationship of 𝑥 and 𝑦.
In higher dimensions we can predict one variable as a linear combination of many.
You will study linear regression in later courses.
We may draw regression lines in some plots.

Spearman's rank correlation coefficient
It can detect non-linear relationships.

We first convert each variable into ranks:
Rank of 𝑥𝑖 is its index in the sorted order of 𝑥1,…,𝑥𝑛.
Equal values get the same (average) rank.
For example, the ranks of 10, 0, 10, 20, 10, 20 are 3, 1, 3, 5.5, 3, 5.5.

Then we compute Pearson correlation coefficient of the two rank sequences.

Properties of Spearman's rank correlation coeficient
Values of 1, -1 if 𝑦 monotonically
increases or decreases with 𝑥.

It is less sensitive to outliers (actual
values of 𝑥 and 𝑦 are not important).

https://commons.wikimedia.org/wiki/File:Spearman_fig1.svg

https://commons.wikimedia.org/wiki/File:Spearman_fig1.svg

Computation in Pandas

Computation in Pandas (cont.)

Anscombe's quartet
Four artificial data sets designed by
Francis Anscombe.

The same or very similar values of:
means and variances of 𝑥 and 𝑦,
Pearson correlation coefficient
(0.816) and linear regression line.

Anscombe's quartet
The same summary statistics,
but visually very different

Importance of visualization:
Plots often give us a much better idea
of the properties of a data set than
simple numerical summaries.

The bottom row illustrates the
influence of outliers on correlation and
regression.

Visual overview
of a data set:
pairplot in
Seaborn

All histograms +
scatterplots

How to compute summaries for groups?

How to compute summaries for groups?
Method groupby splits the table into groups based on values of some column.

We can apply a summary statistics function or describe on each group.

Summary
Summary statistics:

● mean, median, mode
● percentiles, quantiles, quartiles
● min, max, interquartile range,

variance, standard deviation
● Pearson and Spearman correlation

More details in a statistics course

Visualization:

● boxplot
● scatter plots with regression lines
● pairplot

Pandas:

● functions for computing statistics,
describe

● groupby

Next week: more Pandas

1 Lecture 4: Summary statistics
Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

1.1 Introduction
• Summary statistics (popisné charakteristiky / štatistiky) are quantities that summarize basic

properties of a single variable (a table column), such as the mean.
• We can also characterize dependencies between pairs of variables.
• Together with simple plots, such as histograms, they give us the first glimpse at the data

when working with a new data set.
• We start by loading the movie data set, which we use to illustrate these terms.

1.2 Importing the movie data set
• The same data set as in group tasks 04.
• The data set describes 2049 movies.
• The data set was downloaded from https://www.kaggle.com/rounakbanik/the-movies-dataset

and preprocessed, keeping only movies with at least 500 viewer votes.

[1]: import numpy as np
import pandas as pd
from IPython.display import Markdown
import matplotlib.pyplot as plt
import seaborn as sns
pd.options.display.float_format = '{:,.2f}'.format

[2]: url = 'https://bbrejova.github.io/viz/data/Movies_small.csv'
movies = pd.read_csv(url)
display(movies.head())

title year budget revenue original_language runtime \
0 Toy Story 1995 30,000,000.00 373,554,033.00 en 81.00
1 Jumanji 1995 65,000,000.00 262,797,249.00 en 104.00
2 Heat 1995 60,000,000.00 187,436,818.00 en 170.00
3 GoldenEye 1995 58,000,000.00 352,194,034.00 en 130.00
4 Casino 1995 52,000,000.00 116,112,375.00 en 178.00

release_date vote_average vote_count \
0 1995-10-30 7.70 5,415.00
1 1995-12-15 6.90 2,413.00
2 1995-12-15 7.70 1,886.00
3 1995-11-16 6.60 1,194.00
4 1995-11-22 7.80 1,343.00

overview
0 Led by Woody, Andy's toys live happily in his …

1

https://bbrejova.github.io/viz/

1 When siblings Judy and Peter discover an encha…
2 Obsessive master thief, Neil McCauley leads a …
3 James Bond must unmask the mysterious head of …
4 The life of the gambling paradise – Las Vegas …

1.3 Measures of central tendency (miery stredu / polohy)
These represent a typical value in a sample 𝑥 with values 𝑥1, … , 𝑥𝑛 (one numerical column of a
table).

• Mean (priemer) ̄𝑥 = ∑𝑛
𝑖=1 𝑥𝑖
𝑛

– This is the arithmetic mean, there are also geometric and harmonic means.
• Median (medián) is the middle value when the values ordered from smallest to largest.

– For even 𝑛 usually defined as the average of the two middle values.
– Median of 10, 12, 15, 16, 16 is 15.
– Median of 10, 12, 15, 16, 16, 20 is 15.5.

• Mode (modus) is the most frequent value (for a discrete variable).
– Mode of 10,12,15,16,16 is 16.
– For continuous variables, we may look for a mode in a histogram (this is sensitive to bin

size).

https://commons.wikimedia.org/wiki/File:Visualisation_mode_median_mean.svg Cmglee, CC
BY-SA 3.0

1.3.1 Properties of the measures

• If we apply linear transformation 𝑎 ⋅ 𝑥𝑖 + 𝑏 with the same constants 𝑎 and 𝑏 to all values 𝑥𝑖,
mean, median and mode will be also transformed in the same way.

– This corresponds e.g. to the change in the units of measurement (grams vs kilograms,
degrees C vs degrees F)

• Mean can be heavily influenced by outliers.
– Mean of 800, 1000, 1100, 1200, 1800, 2000 and 30000 is 5414.3, median 1200.
– Mean of 800, 1000, 1100, 1200, 1800, 2000 and 10000 is 2557.1, median 1200.

• Therefore we often prefer median (e.g. median salary).

1.3.2 Computation in Pandas

Below we apply functions mean, median, mode to a Series (column year of our table).

Note that mode returns a Series of results (for case of ties). Here just a single value 2013.

Note the use of Python f-strings to print the results.

[3]: display(Markdown("**Properties of the column `year` in our table:**"))
print(f"Mean: {movies['year'].mean():.2f}")
print(f"Median: {movies['year'].median()}")
print(f"Mode:\n{movies['year'].mode()}")

Properties of the column year in our table:

2

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mean.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.median.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mode.html
https://docs.python.org/3/tutorial/inputoutput.html#tut-f-strings

Mean: 2004.14
Median: 2008.0
Mode:
0 2013
Name: year, dtype: int64

Let us see these values in a histogram of the column values (overall view and detail).

[4]: # set up figure with two plots
figure, axes = plt.subplots(1, 2, figsize=(8,3), sharey=True)

plot histograms, use discrete=True to have each year in one bin
sns.histplot(data=movies, x='year', discrete=True, ax=axes[0])
sns.histplot(x=movies.query('year>=2000')['year'], discrete=True, ax=axes[1])

titles and axis labels
axes[0].set_ylabel("The number of movies")
axes[0].set_title('All years in the dataset')
axes[1].set_title('Years 2000-2017')

compute three summary statics, set up their color and label
stats = [{'label':'mean', 'value':movies['year'].mean(), 'color':'red'},

{'label':'median', 'value':movies['year'].median(), 'color':'green'},
{'label':'mode', 'value':movies['year'].mode(), 'color':'black'}]

add dots for all statistics to both plots (at y=5)
for a in axes:

for s in stats:
a.plot(s['value'], 5, 'o', color=s['color'], label=s['label'])

a.legend()

pass

• Functions mean and median can be applied to all numerical columns in a table.
• With axis=1 we can compute means or medians in rows.

3

[5]: display(Markdown("**`movies.mean(numeric_only=True)`:**"), movies.
↪mean(numeric_only=True))

display(Markdown("**`movies.median(numeric_only=True)`:**"), movies.
↪median(numeric_only=True))

movies.mean(numeric_only=True):

year 2,004.14
budget 55,108,939.70
revenue 198,565,134.28
runtime 112.66
vote_average 6.63
vote_count 1,704.64
dtype: float64

movies.median(numeric_only=True):

year 2,008.00
budget 38,000,000.00
revenue 122,200,000.00
runtime 109.00
vote_average 6.60
vote_count 1,092.00
dtype: float64

1.4 Quantiles, percentiles and quartiles (kvantily, percentily, kvartily)
• Median is the middle value in a sorted order.
• Therefore about 50% of values are smaller and 50% larger.
• For a different percentage 𝑝, the 𝑝-th percentile is at position roughly (𝑝/100) ⋅ 𝑛 in the

sorted order of values.
• Similarly quantile (in Pandas), but we give fraction between 0 and 1 rather than percentage.
• Specifically quartiles are three values 𝑄1, 𝑄2 and 𝑄3 that split input data into quarters.

– Therefore, 𝑄2 is the median.
• Many definitions exist regarding situations when the desired fraction falls between two values

(we can take lower, higher, mean, weighted mean etc).

1.4.1 Computation in Pandas

• Function quantile gets a single value between 0 and 1 or a list of values and returns corre-
sponding quantiles.

• To get quantiles for 0.1, 0.2, …, 0.9, we generate a regular sequence of values using np.arange.

[6]: display(Markdown("**Median:**"), movies['year'].median())
display(Markdown("**Quantile for 0.5:**"), movies['year'].quantile(0.5))
display(Markdown("**All quartiles:**"), movies['year'].quantile([0.25, 0.5, 0.

↪75]))
display(Markdown("**With step 0.1:**"), movies['year'].quantile(np.arange(0.1,␣

↪1, 0.1)))

4

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.quantile.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.quantile.html
https://numpy.org/doc/stable/reference/generated/numpy.arange.html

Median:

2008.0

Quantile for 0.5:

2008.0

All quartiles:

0.25 2,000.00
0.50 2,008.00
0.75 2,013.00
Name: year, dtype: float64

With step 0.1:

0.10 1,988.80
0.20 1,998.00
0.30 2,002.00
0.40 2,005.00
0.50 2,008.00
0.60 2,010.00
0.70 2,012.00
0.80 2,014.00
0.90 2,015.00
Name: year, dtype: float64

The code below plots the quartiles highlighted in a histogram.

[7]: # setup histograms
figure, axes = plt.subplots(1, 2, figsize=(8,3), sharey=True)
sns.histplot(data=movies, x='year', discrete=True, ax=axes[0])
sns.histplot(x=movies.query('year>=1985')['year'], discrete=True, ax=axes[1])
axes[0].set_ylabel("The number of movies")
axes[0].set_title('All years in the dataset')
axes[1].set_title('Years 1985-2017')

compute and display quartiles
quartiles = movies['year'].quantile([0.25, 0.5, 0.75])
for a in axes:

a.plot(quartiles, [5] * len(quartiles), 'o', color='black')
pass

5

• The code below illustrates how the quantile function works when returning quantiles which
do not correspond to a single input value.

• Optional parameter interpolation accepts values ‘linear’ (default), ‘lower’,
‘higher’, ‘midpoint’, ‘nearest’.

• Imagine the lowest element at quantile 0, the highest element at quantile 1 and the rest evenly
spaced between. The quantile at position between two elements is influenced only by its two
neighbors.

For example, consider list of values [0,10,20,100]. * Values taken from the list: 𝑝 = 0: 0, 𝑝 = 1/3:
10, 𝑝 = 2/3: 20, 𝑝 = 1: 100 * Example of a different value: 𝑝 = 1/4: by default linear interpolation
at 3/4 between 0 and 10, i.e. 7.5.

Note that linear interpolation is continuous as 𝑝 changes from 0 to 1.

[8]: a = pd.Series([0, 100])
b = pd.Series([0, 10, 20, 30, 100])
c = pd.Series([0, 10, 20, 100])
quantiles = [0.01, 0.25, 0.5, 0.75]
display(Markdown(f"**Quantiles for {list(a)}**"), a.quantile(quantiles))
display(Markdown(f"**Quantiles for {list(b)}**"), b.quantile(quantiles))
display(Markdown(f"**Quantiles for {list(c)}**"), c.quantile(quantiles))
display(Markdown(f"**Quantiles for {list(c)} with `interpolation='lower'`**"),

c.quantile(quantiles, interpolation='lower'))

Quantiles for [0, 100]

0.01 1.00
0.25 25.00
0.50 50.00
0.75 75.00
dtype: float64

Quantiles for [0, 10, 20, 30, 100]

0.01 0.40
0.25 10.00
0.50 20.00

6

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.quantile.html

0.75 30.00
dtype: float64

Quantiles for [0, 10, 20, 100]

0.01 0.30
0.25 7.50
0.50 15.00
0.75 40.00
dtype: float64

Quantiles for [0, 10, 20, 100] with interpolation='lower'

0.01 0
0.25 0
0.50 10
0.75 20
dtype: int64

1.5 Measures of variability (miery variability)
• Values in the sample may be close to their mean or median, or they can spread widely.
• It is important to consider how representative is the mean or median of the whole set.

Examples of measures:

• Range of values from minimum to maximum (sensitive to outliers).
• Interquartile range IQR (kvartilové rozpätie): range between 𝑄1 and 𝑄3 (contains the

middle half of the data).
• Variance and standard deviation (described next).

1.5.1 Variance and standard deviation (rozptyl a smerodajná odchýlka)

Variance

• For each value in the sample compute its difference from the mean and square it: (𝑥𝑖 − ̄𝑥)2.
• After squaring, we get non-negative values (and squares are easier to work with mathemati-

cally than absolute values).
• Variance is the mean of these squares, but we divide by 𝑛 − 1 rather than 𝑛:

𝑠2 = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

𝑛 − 1
• We divide by 𝑛−1 rather than 𝑛, because we would otherwise underestimate the true variance

of the underlying population (more in the statistics course).
• For large 𝑛, the difference between dividing by 𝑛 and 𝑛 − 1 is negligible.

Standard deviation

• Square root of the variance
𝑠 =

√
𝑠2

• It is expressed in the same units as the original values (variance is in units squared).

7

Properties

• Larger variance and standard deviation mean that data are spread farther from the mean
• If we apply linear transformation 𝑎 ⋅ 𝑥𝑖 + 𝑏 with the same constants 𝑎 and 𝑏 to all values 𝑥𝑖:

– Neither variance nor standard deviation change with 𝑏.
– Variance is multiplied by 𝑎2, standard deviation by |𝑎|.

• These measures are strongly influenced by outliers:
– For 800, 1000, 1100, 1200, 1800, 2000, 30000 st. dev. is 10850.0, IQR 850.
– For 800, 1000, 1100, 1200, 1800, 2000, 10000 st. dev. is 3310.5, IQR 850.

1.5.2 Computation in Pandas

We can use functions min, max, std, var, which work similarly to mean.

[9]: display(Markdown("**Minimum**"), movies['year'].min())
display(Markdown("**Maximum**"), movies['year'].max())
display(Markdown("**Mean**"), movies['year'].mean())
display(Markdown("**Variance**"), movies['year'].var())
display(Markdown("**Standard deviation**"), movies['year'].std())
q1 = movies['year'].quantile(0.25)
q3 = movies['year'].quantile(0.75)
display(Markdown("**Q1, Q3 and interquartile range:**"), q1, q3, q3-q1)

Minimum

1927

Maximum

2017

Mean

2004.1449487554905

Variance

161.2714600681735

Standard deviation

12.699270060447313

Q1, Q3 and interquartile range:

2000.0

2013.0

13.0

1.6 Outliers (odľahlé hodnoty)
• Outliers are the values which are far from the typical range of values.
• In data analysis, it is important to check the outliers.
• If they represent errors, we may try to correct or remove them.

8

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.min.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.max.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.std.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.var.html

• They can also represent interesting anomalies.
• Different definitions of outliers may be appropriate in different situations.
• The criterion by statistician John Tukey is often used:

– Outliers are the values outside of the range 𝑄1 − 𝑘 ⋅ 𝐼𝑄𝑅, 𝑄3 + 𝑘 ⋅ 𝐼𝑄𝑅, e.g. for 𝑘 = 1.5.
• In our example 800, 1000, 1100, 1200, 1800, 2000, 30000:

– 𝑄1 = 1050, 𝑄3 = 1900, 𝐼𝑄𝑅 = 850.
– 𝑄1 − 1.5 ⋅ 𝐼𝑄𝑅 = −225, 𝑄3 + 1.5 ⋅ 𝐼𝑄𝑅 = 3175.
– Outliers are values smaller than −225 or larger than 3175; here only 30000.
– The range of outliers is not influenced if we change outliers values (as long as they stay

outside of range Q1-Q3).

1.6.1 Computation in Pandas

• The code below finds outliers in the year column.
• We compute the lower and upper thresholds manually from quartiles.
• Then we use query to select rows and count how many there are.
• Function count counts the values in a Series or columns of a DataFrame, ignoring missing

values.

[10]: # get quartiles and iqr
q1 = movies['year'].quantile(0.25)
q3 = movies['year'].quantile(0.75)
iqr = q3 - q1
compute thresholds for outliers
lower = q1 - 1.5 * iqr
upper = q3 + 1.5 * iqr
count outliers
count = movies.query('year < @lower or year > @upper')['year'].count()
print results
display(Markdown(f"**Outliers outside of range:** [{lower}, {upper}]"))
display(Markdown(f"**Outlier count:** {count}"))
display(Markdown(f"**Total count:** {movies['year'].count()}"))

Outliers outside of range: [1980.5, 2032.5]

Outlier count: 112

Total count: 2049

1.7 Boxplot (krabicový graf)
• Boxplots were developed by Mary Eleanor Hunt Spear and John Tukey.
• For a single numerical variable it shows the five-number summary consisting of the mini-

mum, 𝑄1, median (𝑄2), 𝑄3 and the maximum.
• Median is shown as a thick line, 𝑄1 and 𝑄3 as a box and minimum and maximum as

“whiskers”.
• Outliers are often excluded from the whiskers and shown as individual points.
• Summaries of different samples are often compared in a single boxplot.
• Boxplots allow clear comparison of basic characteristics.

9

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.count.html
https://medium.com/nightingale/credit-where-credit-is-due-mary-eleanor-spear-6a7a1951b8e6
https://www.nasonline.org/member-directory/deceased-members/49649.html

1.7.1 Boxplots in Seaborn

• We use boxplot finction from Seaborn.
• Below is a simple horizontal boxplot of the year column.
• Recall that quartiles are 2000, 2008 and 2013, minimum 1927, maximum 2017, outliers outside

of [1980.5, 2032.5].

[11]: axes = sns.boxplot(data=movies, x='year')
axes.figure.set_size_inches(8,2)

• Below is a vertical boxplot of the year column split into groups according to language.
• This is achieved by specifying both x and y options.

[12]: sns.boxplot(data=movies, x='original_language', y='year')
pass

• Below we draw a strip plot on top of the boxplot.
• This allows us to see both individual data points and the summary.
• Here it does not work very well for en, better suited for smaller datasets.

10

https://seaborn.pydata.org/generated/seaborn.boxplot.html

• We see that some languages have extremely low number of points, boxplots not ideal in that
case.

[13]: axes = sns.boxplot(data=movies, x='original_language', y='year', color='C1')
sns.stripplot(data=movies, x='original_language', y='year', color='C0',

alpha=0.5, size=5, jitter=0.2)
axes.figure.set_size_inches(10,6)
pass

1.8 Quick overview of a data set: describe in Pandas
Function describe gives a quick overview of a data set with many statistics described today.

[14]: movies.describe()

[14]: year budget revenue runtime vote_average \
count 2,049.00 1,959.00 1,965.00 2,049.00 2,049.00
mean 2,004.14 55,108,939.70 198,565,134.28 112.66 6.63
std 12.70 53,139,663.86 233,028,732.94 24.76 0.77
min 1,927.00 1.00 15.00 7.00 4.00
25% 2,000.00 16,000,000.00 52,882,018.00 97.00 6.10
50% 2,008.00 38,000,000.00 122,200,000.00 109.00 6.60
75% 2,013.00 75,000,000.00 250,200,000.00 124.00 7.20
max 2,017.00 380,000,000.00 2,787,965,087.00 705.00 9.10

vote_count
count 2,049.00
mean 1,704.64
std 1,607.89
min 501.00
25% 709.00
50% 1,092.00

11

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.describe.html

75% 2,000.00
max 14,075.00

• By default describe only considers numerical columns.
• Other columns can be included by include='all'.
• Different statistics reported for categorical columns (unique, top, freq).

[15]: movies.describe(include='all').transpose()

[15]: count unique \
title 2049 2018
year 2,049.00 NaN
budget 1,959.00 NaN
revenue 1,965.00 NaN
original_language 2049 16
runtime 2,049.00 NaN
release_date 2049 1740
vote_average 2,049.00 NaN
vote_count 2,049.00 NaN
overview 2049 2049

top freq \
title Beauty and the Beast 3
year NaN NaN
budget NaN NaN
revenue NaN NaN
original_language en 1958
runtime NaN NaN
release_date 2014-12-25 6
vote_average NaN NaN
vote_count NaN NaN
overview Led by Woody, Andy's toys live happily in his … 1

mean std min 25% \
title NaN NaN NaN NaN
year 2,004.14 12.70 1,927.00 2,000.00
budget 55,108,939.70 53,139,663.86 1.00 16,000,000.00
revenue 198,565,134.28 233,028,732.94 15.00 52,882,018.00
original_language NaN NaN NaN NaN
runtime 112.66 24.76 7.00 97.00
release_date NaN NaN NaN NaN
vote_average 6.63 0.77 4.00 6.10
vote_count 1,704.64 1,607.89 501.00 709.00
overview NaN NaN NaN NaN

50% 75% max
title NaN NaN NaN

12

year 2,008.00 2,013.00 2,017.00
budget 38,000,000.00 75,000,000.00 380,000,000.00
revenue 122,200,000.00 250,200,000.00 2,787,965,087.00
original_language NaN NaN NaN
runtime 109.00 124.00 705.00
release_date NaN NaN NaN
vote_average 6.60 7.20 9.10
vote_count 1,092.00 2,000.00 14,075.00
overview NaN NaN NaN

1.9 Correlation (korelácia)
• We are often interested in relationships among different variables (data columns).
• We will see two correlation coefficients that measure the strength of such relationships.
• Beware: correlation does not imply causation.

– If electricity consumption grows in a very cold weather, there might be cause-and-effect
relationship: the cold weather is causing people to use more electricity for heating.

– If healthier people tend to be happier, which is the cause and which is effect?
– Both studied variables can be also influenced by some third, unknown factor. For exam-

ple, within a year, deaths by drowning increase with increased ice cream consumption.
Both increases are spurred by warm weather.

– The observed correlation can be just a coincidence, see the Redskins rule and a specialized
webpage Spurious Correlations.

– You can easily find such “coincidences” by comparing many pairs of variables (a practice
called data dredging).

1.9.1 Pearson correlation coefficient

• It measures linear relationship between two variables.
• Consider pairs of values (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛), where (𝑥𝑖, 𝑦𝑖) are two different features of the

same object.

𝑟 = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

√∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2√∑𝑛

𝑖=1(𝑦𝑖 − ̄𝑦)2

• Or equivalently:

𝑟 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥
𝑠𝑥

) (𝑦𝑖 − ̄𝑦
𝑠𝑦

) .

• where 𝑠𝑥 is the standard deviation of variable 𝑥.
• Expression (𝑥𝑖 − ̄𝑥)/𝑠𝑥 is called the standard score or z-score, and it tells us how many

standard deviations above or below the mean value 𝑥𝑖 is.
• The product of (𝑥𝑖 − ̄𝑥)/𝑠𝑥 and (𝑦𝑖 − ̄𝑦)/𝑠𝑦 is positive if 𝑥𝑖 and 𝑦𝑖 lie on the same side of the

respective means of 𝑥 and 𝑦 and negative if they lie on the opposite sides.

1.9.2 Properties of Pearson correlation coefficient

Values of Pearson correlation coefficient

• The value of 𝑟 is always from interval [−1, 1].

13

https://en.wikipedia.org/wiki/Redskins_Rule
http://www.tylervigen.com/spurious-correlations

• It is 1 if 𝑦 grows linearly with 𝑥, -1 if 𝑦 decreases linearly with increasing 𝑥.
• Zero means no correlation.
• Values between 0 and 1 mean intermediate value of positive correlation, values between -1

and 0 negative correlation.

https://commons.wikimedia.org/wiki/File:Correlation_coefficient.png Kiatdd, CC BY-SA 3.0

Some cautions

• Pearson correlation measures only linear relationships (x and y in the bottom row have non-
linear relationships but their correlation is 0).

• Pearson correlation does not depend on the slope of the best-fit line (see the middle row
below).

https://commons.wikimedia.org/wiki/File:Correlation_examples2.svg public domain

Other properties

• Pearson correlation does not change if we linearly scale each variable, i.e. 𝑎𝑥𝑖 + 𝑏, 𝑐𝑦𝑖 + 𝑑 (for
𝑎, 𝑐 > 0).

• Pearson correlation is symmetric 𝑟𝑥,𝑦 = 𝑟𝑦,𝑥.

1.9.3 Linear regression

• The process of finding the line best representing the relationship of 𝑥 and 𝑦 is called linear
regression.

• It can be used in higher dimensions to predict one variable as a linear combination of many
others.

• You will study linear regression in later courses, but we may draw regression lines in some
plots.

[16]: x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]
y1 = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]
sns.regplot(x=x, y=y1)
pass

14

1.9.4 Spearman’s rank correlation coefficient

• It can detect non-linear relationships.
• We first convert each variable into ranks:

– Rank of 𝑥𝑖 is its index in the sorted order of 𝑥1, … , 𝑥𝑛.
– Equal values get the same (average) rank.
– For example, the ranks of 10, 0, 10, 20, 10, 20 are 3, 1, 3, 5.5, 3, 5.5.

• Then we compute Pearson correlation coefficient of the two rank sequences.
• Values of 1, -1 if 𝑦 monotonically increases or decreases with 𝑥.
• It is less sensitive to distant outliers (actual values of 𝑥 and 𝑦 are not important).

https://commons.wikimedia.org/wiki/File:Spearman_fig1.svg Skbkekas, CC BY-SA 3.0

1.9.5 Computation in Pandas

Function corr computes correlation between all pairs of numerical columns. There is also a version
to compare two Series.

In our table, the highest Pearson correlation is 0.69 for pairs (budget, revenue), (vote_count,
revenue)

[17]: movies.corr(numeric_only=True)

[17]: year budget revenue runtime vote_average vote_count
year 1.00 0.28 0.12 -0.07 -0.34 0.12
budget 0.28 1.00 0.69 0.22 -0.18 0.47
revenue 0.12 0.69 1.00 0.25 0.06 0.69
runtime -0.07 0.22 0.25 1.00 0.31 0.25
vote_average -0.34 -0.18 0.06 0.31 1.00 0.33
vote_count 0.12 0.47 0.69 0.25 0.33 1.00

15

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.corr.html

With Spearman rank correlation, the correlation between revenue and budget remains similar,
but correlation between vote_count and budget decreases from 0.69 to 0.56.

[18]: movies.corr(method='spearman', numeric_only=True)

[18]: year budget revenue runtime vote_average vote_count
year 1.00 0.21 0.02 -0.03 -0.27 0.14
budget 0.21 1.00 0.68 0.24 -0.28 0.37
revenue 0.02 0.68 1.00 0.21 -0.08 0.56
runtime -0.03 0.24 0.21 1.00 0.32 0.27
vote_average -0.27 -0.28 -0.08 0.32 1.00 0.29
vote_count 0.14 0.37 0.56 0.27 0.29 1.00

• Here we illustrate the regression line for revenue versus vote_count.
• We use Seaborn regplot to draw scatterplot together with the regression line.
• Points are made smaller and transparent by scatter_kws={'alpha':0.7, 's':5}.
• The plot on the right shows ranks instead of actual values.
• Ranks are computed using rank function for Series.
• Pearson correlation coefficient is probably driven by outliers.

[19]: # figure with two plots
figure, axes = plt.subplots(1, 2, figsize=(10,5))
plot of values
sns.regplot(x=movies['revenue'] / 1e6, y=movies['vote_count'],

ax=axes[0], scatter_kws={'alpha':0.7, 's':5})
axes[0].set_xlabel('revenue in millions')
axes[0].set_ylabel('vote count')
compute ranks
revenue_rank = movies['revenue'].rank()
vote_count_rank = movies['vote_count'].rank()
plot of ranks
sns.regplot(x=revenue_rank, y=vote_count_rank,

ax=axes[1], scatter_kws={'alpha':0.7, 's':5})
axes[1].set_xlabel('rank of revenue')
axes[1].set_ylabel('rank of vote count')
pass

16

https://seaborn.pydata.org/generated/seaborn.regplot.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.rank.html

1.10 Anscombe’s quartet and importance of visualization
• Anscombe’s quartet are four artificial data sets designed by Francis Anscombe.
• All have the same or very similar values of means and variances of both 𝑥 and 𝑦, Pearson

correlation coefficient (0.816) and linear regression line.
• But visually we see each has a very different character.
• The bottom row illustrates the influence of outliers on correlation and regression.
• Overall this shows that plots give us a much better idea of the properties of a data set than

simple numerical summaries.

[20]: # adapted from https://matplotlib.org/stable/gallery/specialty_plots/anscombe.
↪html

x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]
y1 = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]
y2 = [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]
y3 = [7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73]
x4 = [8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8]
y4 = [6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89]
datasets = [(x, y1), (x, y2), (x, y3), (x4, y4)]

figure, axes = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(7, 7))
axes[0, 0].set(xlim=(0, 20), ylim=(2, 14))

for ax, (x, y) in zip(axes.flat, datasets):
ax.plot(x, y, 'o')
linear regression
slope, intercept = np.polyfit(x, y, deg=1)
ax.axline(xy1=(0, intercept), slope=slope, color='gray')

17

https://matplotlib.org/stable/gallery/specialty_plots/anscombe.html
https://doi.org/10.1080%2F00031305.1973.10478966

1.10.1 Visual overview of a data set: pairplot in Seaborn

• Seaborn pairplot generates a matrix of plots for all numerical columns.
• The diagonal contains histograms of individual columns.
• Off-diagonal entries are scatterplots of two columns.
• Here only 3 columns shown for simpler examination.

[21]: subset = movies.loc[:, ['vote_count', 'budget', 'revenue']]
grid = sns.pairplot(subset, height=2.5)
pass

18

https://seaborn.pydata.org/generated/seaborn.pairplot.html

1.11 Computing summaries of subsets of data: groupby from Pandas
• We have seen that Seaborn can create plots where data are split into groups according to a

categorical variable.
• One example are boxplots, which we have seen today.
• How can we compute summary statistics for each such group in Pandas?

[22]: sns.boxplot(data=movies, x='original_language', y='year')
pass

19

• Pandas DataFrame supports function groupby which splits the table into groups based on
values of some column.

• We can apply a summary statistics function on each group.
• Below we compute medians of all numerical columns for each language and show the first 5

languages.

[23]: movies.groupby('original_language').median(numeric_only=True).head()

[23]: year budget revenue runtime \
original_language
cn 2,006.00 12,902,809.00 39,388,380.00 108.50
da 2,010.00 10,000,000.00 16,740,418.00 119.00
de 2,003.50 6,250,000.00 70,000,000.00 129.00
en 2,008.00 40,000,000.00 126,397,819.00 109.00
es 2,007.00 2,000,000.00 30,448,000.00 118.00

vote_average vote_count
original_language
cn 7.20 762.50
da 6.80 867.50
de 7.60 669.00
en 6.60 1,126.00
es 7.60 797.00

• We can also apply describe on the groupby groups.
• Here only two numerical columns of the original table are shown.

[24]: subset = movies.loc[:, ['original_language', 'year', 'budget']]
subset.groupby('original_language').describe().head()

20

[24]: year \
count mean std min 25% 50% 75%

original_language
cn 4.00 2,005.75 4.03 2,001.00 2,003.25 2,006.00 2,008.50
da 6.00 2,009.33 3.61 2,003.00 2,008.25 2,010.00 2,011.75
de 8.00 1,992.50 28.13 1,927.00 1,993.75 2,003.50 2,006.50
en 1,958.00 2,004.30 12.54 1,936.00 2,000.00 2,008.00 2,013.00
es 7.00 2,007.71 4.39 2,000.00 2,006.50 2,007.00 2,010.00

budget \
max count mean std min

original_language
cn 2,010.00 3.00 14,872,795.67 4,479,793.25 11,715,578.00
da 2,013.00 5.00 13,440,000.00 12,369,640.25 3,800,000.00
de 2,013.00 8.00 18,223,718.75 30,623,544.47 1,530,000.00
en 2,017.00 1,891.00 56,637,200.97 53,394,829.52 1.00
es 2,014.00 5.00 7,500,000.00 8,046,738.47 1,500,000.00

25% 50% 75% max
original_language
cn 12,309,193.50 12,902,809.00 16,451,404.50 20,000,000.00
da 7,400,000.00 10,000,000.00 11,000,000.00 35,000,000.00
de 4,100,000.00 6,250,000.00 15,084,937.50 92,620,000.00
en 18,000,000.00 40,000,000.00 80,000,000.00 380,000,000.00
es 2,000,000.00 2,000,000.00 13,000,000.00 19,000,000.00

1.12 Summary
We have seen several summary statistics:

• mean, median, mode
• percentiles, quantiles, quartiles
• min, max, interquartile range, variance, standard deviation
• Pearson and Spearman correlation

Visualization:

• boxplot
• scatter plots with regression lines
• pairplot

Pandas:

• functions for computing statistics, describe
• groupby
• next week: more Pandas

More details in a statistics course.

21

1 Lecture 5: Advanced Pandas
Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

As usual, we start by importing libraries. We also import the country data set from World Bank
https://databank.worldbank.org/home under CC BY 4.0 license (see Lecture 03b).

[1]: import numpy as np
import pandas as pd
from IPython.display import Markdown
import matplotlib.pyplot as plt
import seaborn as sns
pd.options.display.float_format = '{:,.2f}'.format

[2]: url = 'https://bbrejova.github.io/viz/data/World_bank.csv'
countries = pd.read_csv(url).set_index('Country')

1.1 Hierarchical index (MultiIndex)
1.1.1 A small example table

To illustrate a hierarchical index, we first create a very small table consisting of two countries and
their population in two years, and convert this table from wide to long format.

[3]: example_countries = countries.loc[["Slovak Republic", "Austria"],
["Population2010", "Population2020"]]

display(Markdown("**A small subset of countries table:**"), example_countries)
change to long format
example_long = (example_countries.reset_index()

.melt(id_vars=['Country'],
var_name='Year',
value_name='Population'))

change year from string such as "Population2010" to int 2010
example_long.Year = example_long.Year.apply(lambda x : int(x[-4:]))
display(Markdown("**Changed to long format:**"), example_long)

A small subset of countries table:

Population2010 Population2020
Country
Slovak Republic 5,391,428.00 5,458,827.00
Austria 8,363,404.00 8,916,864.00

Changed to long format:

Country Year Population
0 Slovak Republic 2010 5,391,428.00
1 Austria 2010 8,363,404.00

1

https://bbrejova.github.io/viz/

2 Slovak Republic 2020 5,458,827.00
3 Austria 2020 8,916,864.00

1.1.2 An index with duplicate labels

The original wide table had country as index, but in the long table, each country can have multiple
rows. Pandas still allows us to use country as index with duplicate values. Selecting the name of
the country then gives us multiple rows.

[4]: # set country name as index in a copy of the table
example_long_indexed = example_long.set_index('Country')
display table with index
display(Markdown("**Table with country as index:**"), example_long_indexed)
select Slovakia from this table
display(Markdown("**Selecting multiple rows using `example_long_indexed.

↪loc['Slovak Republic']`:**"))
display(example_long_indexed.loc['Slovak Republic'])

Table with country as index:

Year Population
Country
Slovak Republic 2010 5,391,428.00
Austria 2010 8,363,404.00
Slovak Republic 2020 5,458,827.00
Austria 2020 8,916,864.00

Selecting multiple rows using example_long_indexed.loc['Slovak Republic']:

Year Population
Country
Slovak Republic 2010 5,391,428.00
Slovak Republic 2020 5,458,827.00

1.1.3 Finally the hierarchical index

Our table can be more naturally indexed by a pair (country, year), which uniquely specifies a row.
An index consisting of two or more levels is called hierarchical or multi-level.

• MultiIndex can be created by set_index with a list of columns to use as index.
• For faster operations, it is a good idea to sort the table by the index using sort_index.
• In loc use a tuple with one value per level, or only several initial levels.
• To specify other levels, use xs.

[5]: # create MultiIndex by choosing a list of columns
example_multiindexed = example_long.set_index(['Country', 'Year']).sort_index()
display(Markdown("**Table with a multiindex:**"), example_multiindexed)

Table with a multiindex:

2

https://pandas.pydata.org/docs/user_guide/duplicates.html
https://pandas.pydata.org/docs/user_guide/advanced.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_index.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.xs.html

Population
Country Year
Austria 2010 8,363,404.00

2020 8,916,864.00
Slovak Republic 2010 5,391,428.00

2020 5,458,827.00

[6]: display(Markdown("**Selecting a row by using a tuple in `loc`:**"))
display(example_multiindexed.loc[('Slovak Republic', 2010)])

Selecting a row by using a tuple in loc:

Population 5,391,428.00
Name: (Slovak Republic, 2010), dtype: float64

[7]: display(Markdown("**Selecting all rows for a country using a shorter tuple in␣
↪`loc`:**"))

display(example_multiindexed.loc[('Slovak Republic',)])

Selecting all rows for a country using a shorter tuple in loc:

Population
Year
2010 5,391,428.00
2020 5,458,827.00

[8]: display(Markdown("**Selecting all rows for a year using `xs`:**"))
display(example_multiindexed.xs(2010, level='Year'))

Selecting all rows for a year using xs:

Population
Country
Austria 8,363,404.00
Slovak Republic 5,391,428.00

[9]: display(Markdown("**Names of index levels can be used in `query`:**"))
display(example_multiindexed.query('Year > 2015'))

Names of index levels can be used in query:

Population
Country Year
Austria 2020 8,916,864.00
Slovak Republic 2020 5,458,827.00

1.2 Combining tables
1.2.1 Concatenating tables using concat

• Function concat can be used to concatenate several tables.

3

https://pandas.pydata.org/docs/reference/api/pandas.concat.html

• At the default settings, it combines along axis 0, meaning that the rows of second table are
added after the rows of the first table.

• We will also use it for axis=1, in which case it finds rows with the same index in both tables
and combines their columns.

• By default, the result has union of rows of the two tables, but intersection can be obtained
by join='inner'.

Example Create a second small table of countries and display both tables. Then illustrate various
concatenation modes using these tables.

[10]: example_countries2 = countries.loc[["Slovak Republic", "Austria", "Hungary"],
["Area", "Region"]]

display(Markdown("**The first small table:**"), example_countries)
display(Markdown("**The second small table:**"), example_countries2)

The first small table:

Population2010 Population2020
Country
Slovak Republic 5,391,428.00 5,458,827.00
Austria 8,363,404.00 8,916,864.00

The second small table:

Area Region
Country
Slovak Republic 49,030.00 Europe & Central Asia
Austria 83,879.00 Europe & Central Asia
Hungary 93,030.00 Europe & Central Asia

[11]: display(Markdown("**Tables concatenated along axis 0:**"))
display(pd.concat([example_countries, example_countries2]))

Tables concatenated along axis 0:

Population2010 Population2020 Area \
Country
Slovak Republic 5,391,428.00 5,458,827.00 NaN
Austria 8,363,404.00 8,916,864.00 NaN
Slovak Republic NaN NaN 49,030.00
Austria NaN NaN 83,879.00
Hungary NaN NaN 93,030.00

Region
Country
Slovak Republic NaN
Austria NaN
Slovak Republic Europe & Central Asia
Austria Europe & Central Asia
Hungary Europe & Central Asia

4

[12]: display(Markdown("**Tables concatenated along axis 1:**"))
display(pd.concat([example_countries, example_countries2], axis=1))

Tables concatenated along axis 1:

Population2010 Population2020 Area \
Country
Slovak Republic 5,391,428.00 5,458,827.00 49,030.00
Austria 8,363,404.00 8,916,864.00 83,879.00
Hungary NaN NaN 93,030.00

Region
Country
Slovak Republic Europe & Central Asia
Austria Europe & Central Asia
Hungary Europe & Central Asia

[13]: display(Markdown("**Tables concatenated along axis 1 with inner join:**"))
display(pd.concat([example_countries, example_countries2], axis=1,␣

↪join='inner'))

Tables concatenated along axis 1 with inner join:

Population2010 Population2020 Area \
Country
Slovak Republic 5,391,428.00 5,458,827.00 49,030.00
Austria 8,363,404.00 8,916,864.00 83,879.00

Region
Country
Slovak Republic Europe & Central Asia
Austria Europe & Central Asia

1.2.2 Merging tables with merge

• Function merge works similarly as concat with axis=1, but it will match lines of two tables
using any specified columns, not necessarily index.

• If values in these columns repeat, it combines all matching pairs of rows.
• Setting how in merge allows us to include rows that do not have a matching row in the other

table.

[14]: # a small example of how all combinations of matching rows are returned:
tab1 = pd.DataFrame({'name': ['a','a','a','b'], 'value': [1,2,3,4]})
tab2 = pd.DataFrame({'name': ['a','a','b'], 'value': [10,20,30]})
display(Markdown("**DataFrame `tab1`:**"))
display(tab1)
display(Markdown("**DataFrame `tab2`:**"))
display(tab2)
display(Markdown("**Result of `pd.merge(tab1, tab2, on='name')`:**"))

5

https://pandas.pydata.org/docs/reference/api/pandas.merge.html

display(pd.merge(tab1, tab2, on='name'))

DataFrame tab1:

name value
0 a 1
1 a 2
2 a 3
3 b 4

DataFrame tab2:

name value
0 a 10
1 a 20
2 b 30

Result of pd.merge(tab1, tab2, on='name'):

name value_x value_y
0 a 1 10
1 a 1 20
2 a 2 10
3 a 2 20
4 a 3 10
5 a 3 20
6 b 4 30

Example of using merge on countries

• Countries belong to various international organizations and a single country can belong to
many. We will represent this as a table having one row for each pair of country and an
organization it belongs to.

• To combine this with other country data, we apply merge to get a table in which each country
is copied for each organization it is in.

• Then we can for example compute the total number of people living in countries covered by
individual organizations.

[15]: # we create a small membership table by parsing a CSV-format string
import io
membership_str = io.StringIO("""Country,Member
Slovak Republic,NATO
Slovak Republic,EU
Slovak Republic,UN
Austria,UN
Austria,EU
""")
membership = pd.read_csv(membership_str)
display(Markdown("**A small country membership table:**"), membership)

A small country membership table:

6

Country Member
0 Slovak Republic NATO
1 Slovak Republic EU
2 Slovak Republic UN
3 Austria UN
4 Austria EU

[16]: # merging tables using column Country in both
example_membership = pd.merge(example_countries, membership, on='Country')
display(Markdown("**Merged table:**"), example_membership)

Merged table:

Country Population2010 Population2020 Member
0 Slovak Republic 5,391,428.00 5,458,827.00 NATO
1 Slovak Republic 5,391,428.00 5,458,827.00 EU
2 Slovak Republic 5,391,428.00 5,458,827.00 UN
3 Austria 8,363,404.00 8,916,864.00 UN
4 Austria 8,363,404.00 8,916,864.00 EU

[17]: # compute the total number of people in EU (here only for our two countries)
display(example_membership.query('Member == "EU"')['Population2020'].sum())

14375691.0

As we will see in the next section, we can also use groupby to compute sums for all organizations.

[18]: display(Markdown("**The sum of country populations for each organization**␣
↪(only for our two countries)"))

display(example_membership.groupby('Member')['Population2020'].sum())

The sum of country populations for each organization (only for our two countries)

Member
EU 14,375,691.00
NATO 5,458,827.00
UN 14,375,691.00
Name: Population2020, dtype: float64

Similar operations are often done in relational databases, where merge is called join. Aggregation
as in groupby is also frequently used. More in a specialized database course in the third year.

1.3 Aggregation, split-apply-combine (groupby)
We have already seen simple examples of aggregation by groupby in Lecture 04. Here we discuss
it in more detail.

Pandas follow the split-apply-combine strategy introduced in R by Hadley Wickham.

Split: split data into groups, often by values in some column, such as Region in the countries
table.

7

https://pandas.pydata.org/docs/user_guide/groupby.html
https://www.jstatsoft.org/article/view/v040i01/v40i01.pdf

Apply: apply some computation on each group, obtaining some result (single value, Series,
DataFrame).

Combine: concatenate results for all groups together to a new table.

Typical operations in the apply step:

• aggregation: e.g. compute group size, mean, median etc.
• transformation: e.g. compute percentage or rank of each item within a group
• filtering: e.g. include only groups that are large enough

In Pandas, this is done by combination of groupby for the split step and additional functions for
the apply step. The combine step is done implicitly. Pandas library provides many options, we will
cover only basics.

1.3.1 Simple aggregation in the apply step

Apply functions such as sum, mean, median, min, max, size, count, describe after groupby.

• size gives the number of rows in the group.
• count gives the number of non-missing values in each column.

[19]: display(Markdown("**The number of countries in each region:**"))
display(countries.groupby('Region').size())

The number of countries in each region:

Region
East Asia & Pacific 37
Europe & Central Asia 58
Latin America & Caribbean 42
Middle East & North Africa 21
North America 3
South Asia 8
Sub-Saharan Africa 48
dtype: int64

[20]: display(Markdown("**Sums of country indicators in each region**"))
display(Markdown(" (including nonsense sums such as life expectation or GDP per␣

↪capita)"))
display(countries.groupby('Region').sum(numeric_only=True))

Sums of country indicators in each region

(including nonsense sums such as life expectation or GDP per capita)

Population2000 Population2010 Population2020 \
Region
East Asia & Pacific 2,025,976,167.00 2,187,065,378.00 2,340,350,517.00
Europe & Central Asia 862,786,208.00 889,169,626.00 922,353,365.00
Latin America & Caribbean 521,281,151.00 588,873,865.00 650,534,988.00
Middle East & North Africa 321,037,455.00 397,997,552.00 479,966,650.00

8

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby

North America 312,909,973.00 343,397,156.00 369,582,572.00
South Asia 1,406,945,496.00 1,660,546,144.00 1,882,531,621.00
Sub-Saharan Africa 671,212,484.00 879,797,424.00 1,151,302,077.00

Area GDP2000 GDP2010 GDP2020 \
Region
East Asia & Pacific 24,794,669.42 233,980.83 506,478.43 569,610.58
Europe & Central Asia 28,813,751.77 883,386.74 1,752,994.15 1,966,242.67
Latin America & Caribbean 20,523,017.36 194,902.34 462,544.16 522,816.20
Middle East & North Africa 11,385,553.90 172,013.59 327,153.10 293,809.50
North America 19,715,550.00 116,885.13 198,088.01 214,882.96
South Asia 5,135,270.00 5,525.87 16,479.92 21,370.63
Sub-Saharan Africa 24,328,265.87 43,582.79 108,587.66 96,165.83

Expectancy2000 Expectancy2010 Expectancy2020 \
Region
East Asia & Pacific 2,436.61 2,454.65 2,520.88
Europe & Central Asia 4,053.36 4,204.81 4,255.06
Latin America & Caribbean 2,931.71 3,013.73 2,957.72
Middle East & North Africa 1,496.97 1,557.33 1,568.09
North America 234.66 240.36 239.79
South Asia 511.70 546.95 568.09
Sub-Saharan Africa 2,547.64 2,803.97 3,003.10

Fertility2000 Fertility2010 Fertility2020
Region
East Asia & Pacific 103.92 91.58 80.30
Europe & Central Asia 94.74 100.09 93.30
Latin America & Caribbean 108.07 90.74 76.61
Middle East & North Africa 71.54 59.86 52.64
North America 5.31 5.28 4.45
South Asia 31.62 24.66 19.56
Sub-Saharan Africa 262.34 237.78 205.94

[21]: display(Markdown("**Specifically sum only population in 2020 per region:**"))
display(countries.groupby('Region')['Population2020'].sum())

Specifically sum only population in 2020 per region:

Region
East Asia & Pacific 2,340,350,517.00
Europe & Central Asia 922,353,365.00
Latin America & Caribbean 650,534,988.00
Middle East & North Africa 479,966,650.00
North America 369,582,572.00
South Asia 1,882,531,621.00
Sub-Saharan Africa 1,151,302,077.00
Name: Population2020, dtype: float64

9

1.3.2 Transformation in the apply step

Here we use transform method which get a function which is used on every group and should
produce a group with the same index. We could write our own function (e.g. a lambda expression)
or we can use one the built-in functions specified by a string.

Here we compute for each country what percentage is its population from the population of the
region.

[22]: # group countries by region, compute the sum of each region
and copy the regional sum for each country
region_sums = countries.groupby('Region')['Population2020'].transform('sum')
display(Markdown("**For each country, what is the total population of its␣

↪region:**"))
display(region_sums)
now divide the population of the country by the regional total
pop_within_group = countries['Population2020'] / region_sums
display(Markdown("**For each country, what fraction is its population within␣

↪region:**"))
display(pop_within_group.head())

For each country, what is the total population of its region:

Country
Afghanistan 1,882,531,621.00
Albania 922,353,365.00
Algeria 479,966,650.00
American Samoa 2,340,350,517.00
Andorra 922,353,365.00

…
Virgin Islands 650,534,988.00
West Bank and Gaza 479,966,650.00
Yemen 479,966,650.00
Zambia 1,151,302,077.00
Zimbabwe 1,151,302,077.00
Name: Population2020, Length: 217, dtype: float64

For each country, what fraction is its population within region:

Country
Afghanistan 0.02
Albania 0.00
Algeria 0.09
American Samoa 0.00
Andorra 0.00
Name: Population2020, dtype: float64

Bellow we see an alternative form of the same computation when transformation is done via a
lambda function that takes a list x of country sizes within a region and divides them by the sum
of x.

10

https://pandas.pydata.org/docs/user_guide/groupby.html#the-transform-method

The use of lambda functions applied on each element is often convenient but might be slow on large
data.

[23]: pop_within_group = (countries.groupby('Region')['Population2020']
.transform(lambda x : x / x.sum()))

display(Markdown("**For each country, what fraction is its population within␣
↪region:**"))

display(pop_within_group.head())

For each country, what fraction is its population within region:

Country
Afghanistan 0.02
Albania 0.00
Algeria 0.09
American Samoa 0.00
Andorra 0.00
Name: Population2020, dtype: float64

Lambda expression lambda x : x / x.sum() above is a shorthand for defining a function which
gets x and returns x / x.sum(). Below we show a version with function explictly defined.

[24]: def group_fraction(x):
return x / x.sum()

pop_within_group = (countries.groupby('Region')['Population2020']
.transform(group_fraction))

display(Markdown("**For each country, what fraction is its population within␣
↪region:**"))

display(pop_within_group.head())

For each country, what fraction is its population within region:

Country
Afghanistan 0.02
Albania 0.00
Algeria 0.09
American Samoa 0.00
Andorra 0.00
Name: Population2020, dtype: float64

[25]: display(Markdown("**Add back region name using concat:**"))
pop_within_group2 = pd.concat([pop_within_group, countries['Region']], axis=1)
display(pop_within_group2.head())

display(Markdown("**Look up value for Slovakia:**"))
display(pop_within_group2.loc["Slovak Republic"])

Add back region name using concat:

Population2020 Region

11

Country
Afghanistan 0.02 South Asia
Albania 0.00 Europe & Central Asia
Algeria 0.09 Middle East & North Africa
American Samoa 0.00 East Asia & Pacific
Andorra 0.00 Europe & Central Asia

Look up value for Slovakia:

Population2020 0.01
Region Europe & Central Asia
Name: Slovak Republic, dtype: object

[26]: display(Markdown("**Check that the sum of each region is 1:**"))
display(pop_within_group2.groupby('Region').sum())

Check that the sum of each region is 1:

Population2020
Region
East Asia & Pacific 1.00
Europe & Central Asia 1.00
Latin America & Caribbean 1.00
Middle East & North Africa 1.00
North America 1.00
South Asia 1.00
Sub-Saharan Africa 1.00

1.3.3 Filtering in the apply step

Finally, groupby can be followed by filter to use only some of the groups in the result.

Here we report all countries in regions that have at least one billion inhabitants.

[27]: # filter gets a function returning a boolean value for each group
filtered = (countries.groupby("Region")

.filter(lambda x : x['Population2020'].sum() > 1e9))
display(Markdown("**Filtered data:**"))
display(filtered.head())
display(Markdown("**Check sums in regions for selected countries:**"))
display(filtered.groupby('Region')['Population2020'].sum())

Filtered data:

ISO3 Region Income Group Population2000 \
Country
Afghanistan AFG South Asia Low income 19,542,983.00
American Samoa ASM East Asia & Pacific High income 58,229.00
Angola AGO Sub-Saharan Africa Lower middle income 16,394,062.00
Australia AUS East Asia & Pacific High income 19,028,802.00
Bangladesh BGD South Asia Lower middle income 129,193,327.00

12

https://pandas.pydata.org/docs/user_guide/groupby.html#filtration

Population2010 Population2020 Area GDP2000 \
Country
Afghanistan 28,189,672.00 38,972,231.00 652,860.00 NaN
American Samoa 54,849.00 46,189.00 200.00 NaN
Angola 23,364,186.00 33,428,486.00 1,246,700.00 556.88
Australia 22,031,750.00 25,649,247.00 7,741,220.00 21,870.42
Bangladesh 148,391,139.00 167,420,950.00 147,570.00 413.10

GDP2010 GDP2020 Expectancy2000 Expectancy2010 \
Country
Afghanistan 562.50 512.06 55.30 60.85
American Samoa 10,446.86 15,609.78 NaN NaN
Angola 3,586.66 1,450.91 46.02 56.73
Australia 52,147.02 51,868.25 79.23 81.70
Bangladesh 776.86 2,233.31 65.78 68.64

Expectancy2020 Fertility2000 Fertility2010 Fertility2020
Country
Afghanistan 62.58 7.53 6.10 4.75
American Samoa NaN NaN NaN NaN
Angola 62.26 6.64 6.19 5.37
Australia 83.20 1.76 1.93 1.58
Bangladesh 71.97 3.22 2.34 2.00

Check sums in regions for selected countries:

Region
East Asia & Pacific 2,340,350,517.00
South Asia 1,882,531,621.00
Sub-Saharan Africa 1,151,302,077.00
Name: Population2020, dtype: float64

1.3.4 Grouping by multiple values

Function groupby can get a single column, but also a list of columns or a Series which will be used
as if it was a column of the table.

[28]: display(Markdown("**Populations split by both region and income group**"))
display(countries.groupby(['Region', "Income Group"])['Population2020'].sum())

Populations split by both region and income group

Region Income Group
East Asia & Pacific High income 223,971,823.00

Low income 25,867,467.00
Lower middle income 301,779,468.00
Upper middle income 1,788,731,759.00

Europe & Central Asia High income 522,292,344.00
Lower middle income 94,487,207.00

13

Upper middle income 305,573,814.00
Latin America & Caribbean High income 34,033,357.00

Lower middle income 40,120,621.00
Upper middle income 547,890,556.00

Middle East & North Africa High income 68,156,525.00
Low income 53,056,642.00
Lower middle income 304,739,289.00
Upper middle income 54,014,194.00

North America High income 369,582,572.00
South Asia Low income 38,972,231.00

Lower middle income 1,843,044,952.00
Upper middle income 514,438.00

Sub-Saharan Africa High income 98,462.00
Low income 549,157,331.00
Lower middle income 533,054,222.00
Upper middle income 68,992,062.00

Name: Population2020, dtype: float64

• Now we create a Series classifying each country as small, medium and large using cutoff 1
million for small and 100 million for medium.

• We then use this series in groupby.
• The classification is created by pd.cut function.

[29]: bin_ends = [0, 1e6, 1e8, 1e10]
bin_labels = ["small", "medium", "large"]
size_groups = pd.cut(countries['Population2020'],

bins=bin_ends, labels=bin_labels).rename("SizeCategory")
display(Markdown("**Country size classification:**"))
display(size_groups.head())

Country size classification:

Country
Afghanistan medium
Albania medium
Algeria medium
American Samoa small
Andorra small
Name: SizeCategory, dtype: category
Categories (3, object): ['small' < 'medium' < 'large']

Now we can use size_groups Series in groupby.

Parameter observed=True is related to the fact that size_groups is has a categorial variable type
to be explained next.

[30]: # now use size_groups in groupby
display(Markdown("**The number of countries in each size group:**"))
display(countries.groupby(size_groups, observed=True).size())
display(Markdown("**The number of countries in each size group and region:**"))

14

https://pandas.pydata.org/docs/reference/api/pandas.cut.html
https://pandas.pydata.org/docs/user_guide/groupby.html#handling-of-un-observed-categorical-values

display(countries.groupby(['Region', size_groups], observed=True).size())

The number of countries in each size group:

SizeCategory
small 57
medium 146
large 14
dtype: int64

The number of countries in each size group and region:

Region SizeCategory
East Asia & Pacific small 18

medium 15
large 4

Europe & Central Asia small 12
medium 45
large 1

Latin America & Caribbean small 19
medium 21
large 2

Middle East & North Africa small 1
medium 19
large 1

North America small 1
medium 1
large 1

South Asia small 2
medium 3
large 3

Sub-Saharan Africa small 4
medium 42
large 2

dtype: int64

1.4 Categorical variables
Categorical variables have values from a small set, such as region and income group in the table of
countries. So far we have represented them only as strings, but we can explicitly convert them to
a categorical data type in Pandas.

This has several advantages: * Strings are internally replaced by numerical IDs within the table,
potentially saving memory. * Categories can be ordered and then sorting, minimum, maximum
etc works as desired, not alphabetically. * Pandas is aware of the full set of possible values. For
example categories without members can appear in the groupby results.

Example Income groups in our table are strings, we will convert them to an ordered categorical
variable.

15

https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html

[31]: # creating a categorical type
cat_type = pd.api.types.CategoricalDtype(categories=["Low income",

"Lower middle income",
"Upper middle income",
"High income"],

ordered=True)
converting Income Group column to cat_type in a new DataFrame
countries_cat = countries.astype({'Income Group': cat_type})

display(Markdown("**Income Group column in the old table:**"),
countries['Income Group'].head(3))

display(Markdown("**Income Group column in the new table:**"),
countries_cat['Income Group'].head(3))

Income Group column in the old table:

Country
Afghanistan Low income
Albania Upper middle income
Algeria Lower middle income
Name: Income Group, dtype: object

Income Group column in the new table:

Country
Afghanistan Low income
Albania Upper middle income
Algeria Lower middle income
Name: Income Group, dtype: category
Categories (4, object): ['Low income' < 'Lower middle income' < 'Upper middle␣

↪income' < 'High income']

[32]: display(Markdown("**Minimum and maximum income group in the table with␣
↪categorical values:**"

" (manually fixed order):"))
display(countries_cat['Income Group'].min())
display(countries_cat['Income Group'].max())

display(Markdown("**Minimum and maximum income group in the table with␣
↪strings**"

" (alphabetical order):"))
display(countries['Income Group'].dropna().min())
display(countries['Income Group'].dropna().max())

Minimum and maximum income group in the table with categorical values: (manually
fixed order):

'Low income'

'High income'

16

Minimum and maximum income group in the table with strings (alphabetical order):

'High income'

'Upper middle income'

• Note that if categories do not need a fixed order, they can be created automatically by the
astype function as in the code below.

• Notice that groupby creates even empty groups which would not happen with strings. This
is caused by observed=False setting.

[33]: # convert region to an unordered category
countries_cat2 = countries_cat.astype({'Region': 'category'})
count the number of countries for each combination of income group and region
countries_cat2.groupby(['Income Group', 'Region'], observed=False).size()

[33]: Income Group Region
Low income East Asia & Pacific 1

Europe & Central Asia 0
Latin America & Caribbean 0
Middle East & North Africa 2
North America 0
South Asia 1
Sub-Saharan Africa 22

Lower middle income East Asia & Pacific 13
Europe & Central Asia 4
Latin America & Caribbean 4
Middle East & North Africa 8
North America 0
South Asia 6
Sub-Saharan Africa 19

Upper middle income East Asia & Pacific 9
Europe & Central Asia 16
Latin America & Caribbean 19
Middle East & North Africa 3
North America 0
South Asia 1
Sub-Saharan Africa 6

High income East Asia & Pacific 14
Europe & Central Asia 38
Latin America & Caribbean 18
Middle East & North Africa 8
North America 3
South Asia 0
Sub-Saharan Africa 1

dtype: int64

17

1.5 Dates and times
An important type of data sets are time series, where some variables are measured repeatedly over
time. Pandas has an extensive support for work with times and dates. Here we show only a small
example.

• We illustrate this on the movie dataset from Kaggle (see lecture 04).
• The column labeled release_date is recognized as date by passing parse_dates parameter

to read_csv.
• Then we call function day_name() to get the day of week for each release day and use

value_counts to see which days are most frequent as movie release dates.
• We also use the release date as the x-coordinate in a scatterplot.

[34]: # import data, including parsing of dates
url = 'https://bbrejova.github.io/viz/data/Movies_small.csv'
movies = pd.read_csv(url, parse_dates=['release_date'])
get days of week for realse dates
days = movies['release_date'].apply(lambda x : x.day_name())
days.value_counts()

[34]: release_date
Friday 639
Thursday 515
Wednesday 474
Tuesday 175
Saturday 94
Monday 87
Sunday 65
Name: count, dtype: int64

[35]: # use release date is x-coordinate
sns.scatterplot(data=movies, x='release_date', y='budget')
pass

18

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://www.kaggle.com/rounakbanik/the-movies-dataset
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.day_name.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.value_counts.html

1.6 Missing values
Data sets are often incomplete, and Pandas provides techniques for working with missing data.

• Missing data are typically imported as np.nan (not-a-number).
• These cannot occur in int-type columns, so ints are converted to floats, but can be handled

in a special way.

Bellow we show a small example what happens when working with missing data, including functions
isna, dropna, fillna.

[36]: # create a small series with one missing value
a = pd.Series([1, 2, np.nan, 3])
display(Markdown("**`a.sum()` skips missing values:**"),

a.sum())
display(Markdown("**`a.count()` counts non-missing values:**"),

a.count())
display(Markdown("**`a.mean()` also considers only non-missing:**"),

a.mean())
display(Markdown("**`a > 2` evaluates missing values as `False`, similarly `<`,␣

↪`==`:**"),
a > 2)

display(Markdown("**`a == np.nan` also evaluates as `False`:**"),
a == np.nan)

display(Markdown("**`a.isna()` can be used to detect missing values:**"),
a.isna())

display(Markdown("**`a.dropna()` omits missing values:**"),
a.dropna())

display(Markdown("**`a.fillna(-1)` replaces them with a specified value:**"),

19

https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/integer_na.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.isna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dropna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dropna.html

a.fillna(-1))

a.sum() skips missing values:

6.0

a.count() counts non-missing values:

3

a.mean() also considers only non-missing:

2.0

a > 2 evaluates missing values as False, similarly <, ==:

0 False
1 False
2 False
3 True
dtype: bool

a == np.nan also evaluates as False:

0 False
1 False
2 False
3 False
dtype: bool

a.isna() can be used to detect missing values:

0 False
1 False
2 True
3 False
dtype: bool

a.dropna() omits missing values:

0 1.00
1 2.00
3 3.00
dtype: float64

a.fillna(-1) replaces them with a specified value:

0 1.00
1 2.00
2 -1.00
3 3.00
dtype: float64

20

1.7 Pandas efficiency
Below we show several examples how different ways of implementing the same operation can have
very different running time on large data. Pandas functions are usually much faster than manual
iteration. However, if you do not work on huge data sets, the difference is not so important.

To measure time, we use a special Jupyter command %timeit. * It runs the code several times to
estimate the time per one repeat.

[37]: # generate a Series of million random numbers and also convert it to Python list
length = int(1e6)
xs = pd.Series(np.random.uniform(0,100, length))
xl = list(xs)

Below we see that method sum() on Series is faster than Python built-in sum on a Python list, but
Python built-in sum on Series is much slower, because it iterates over elements of Series.

[38]: display(Markdown("**Method `sum` on `Series` `xs.sum()`:**"))
%timeit result = xs.sum()
display(Markdown("**Python `sum` on Python list `sum(xl)`:**"))
%timeit result = sum(xl)
display(Markdown("**Python `sum` on Series `sum(xs)`:**"))
%timeit result = sum(xs)

Method sum on Series xs.sum():

1.12 ms ± 104 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

Python sum on Python list sum(xl):

6.77 ms ± 401 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Python sum on Series sum(xs):

58.3 ms ± 351 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Below we compare three ways of generating a sequence of squared values. Multiplying Series with
* is the fastest, Python list comprehension is much slower and apply function from Pandas is even
slower.

[39]: display(Markdown("**Pandas `Series` multiplication `x2s = xs * xs`**:"))
%timeit x2s = xs * xs
display(Markdown("**Python list comprehension on a list `x2l = [x * x for x in␣

↪xl]`:**"))
%timeit x2l = [x * x for x in xl]
display(Markdown("**Pandas `apply` function `x2s = xs.apply(lambda x : x *␣

↪x)`**"))
%timeit x2s = xs.apply(lambda x : x * x)

Pandas Series multiplication x2s = xs * xs:

1.67 ms ± 50.2 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

21

https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit

Python list comprehension on a list x2l = [x * x for x in xl]:

53.6 ms ± 6.34 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Pandas apply function x2s = xs.apply(lambda x : x * x)

234 ms ± 12.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The code below creates the Series of squares by creating a Series filled with zeroes and then assigning
individual values using for-loop. This is again much slower than all methods above, so to make the
code reasonably fast, we run it on data which is 100 times smaller than above.

[40]: length2 = 10000
xs_small = xs.iloc[0:length2]
def assignments(len, x):

x2 = pd.Series([0.0] * len)
for i in range(len):
x2[i] = x[i] * x[i]

return x2
%timeit x2s_small = assignments(length2, xs_small)

173 ms ± 1.02 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Finally the code below is even worse. It appends individual squares to a Series which starts with
size 1. We run it on even smaller list of size 1000.

[41]: length3 = 1000
xs_tiny = xs.iloc[0:length3]
def assignments(len, x):

x2 = pd.Series([0.0])
for i in range(len):
x2[i] = x[i] * x[i]

return x2
%timeit x2s_tiny = assignments(length3, xs_tiny)

286 ms ± 16 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

22

Lecture 6
Maps, graphs, time series

Data visualization · 1-DAV-105
Lecture by Broňa Brejová

More details in the notebook version

https://bbrejova.github.io/viz/
https://colab.research.google.com/github/bbrejova/viz/blob/master/notebooks/L06_Maps_etc.ipynb

Part I: Maps

Maps
Each map is a visualization of data about location
of objects.

Conventions about colors and symbols,
orientation etc. allow us to quickly understand a
map.

Example:
A topographic map from US

https://en.wikipedia.org/wiki/Map#/media/File:Topographic_map_example.png

https://en.wikipedia.org/wiki/Map#/media/File:Topographic_map_example.png

Data visualization in maps
Thematic maps (tematické mapy) visualize
data other than typical geographical features

Recall Snow's map of cholera cases (1854)

Additional examples: Wikipedia, GeoPlot
library gallery.

https://commons.wikimedia.org/wiki/File:Snow-cholera-map-1.jpg

https://en.wikipedia.org/wiki/Thematic_map
https://residentmario.github.io/geoplot/gallery/index.html
https://residentmario.github.io/geoplot/gallery/index.html
https://commons.wikimedia.org/wiki/File:Snow-cholera-map-1.jpg

Map projection (kartografické zobrazenie)
A transformation to project the surface of a
globe onto a plane

Each projection introduces some distortion

Conformal projections preserve local angles,
but distort other aspects, such as lengths,
areas etc.

For example, Mercator projection (1569)
developed for navigation, but shows Greenland
bigger than Africa, while in fact it is 14x smaller.

Map projection (kartografické zobrazenie)
Equal-area projections preserve areas (cannot be conformal at the same time).

These are typically good for data visualization, as they make areas comparable.

Example: Mollweide
equal-area projection
(1805)

Map projection (kartografické zobrazenie)
Orthographic projection is similar to a photograph of the Earth from a very
distant point.

It is not an equal-area projection, but our sense of perspective may compensate.

It displays one hemisphere.

Recommended projections (Cairo, The Truthful Art)
Whole world: e.g. Mollweide equal-area projection (1805)
Continents / large countries: e.g. Lambert azimuthal equal-area projection
(1772)
Countries in mid-latitudes: e.g. Albers equal-area conic projection (1805)
Polar regions: e.g. Lambert azimuthal equal-area projection (1772)

Mollweide

Lambert

Projection examples in Plotly

Adding data as points and lines to a map
Geographic coordinates of places can be projected as x and y.
Additional values can be shown using marker color / size or line color / width.

Example: airport locations in Europe and airline connections from Slovakia.

Our airport dataset
● The dataset of 2173 international airports of the world from the World Bank

under the CC-BY 4.0 license, and preprocessed.
● For each airport its 3-letter code, name, country, 3-letter code of the country,

the number of airplane seats per year (from unknown years) and the location.
● Stored in GeoJSON format.
● We parse the file using GeoPandas library for working with geographical

data.
● It is an extension of Pandas DataFrame, with location information.

Importing airports in GeoPandas

Drawing airport bubble graph in Plotly

Interactive plot:
zooming, panning,
tooltips

Importing airport connections in GeoPandas

Drawing airline connections in Plotly

Displaying variables that vary over space
Elevation can be measured at any point on land.
How is it visualized on geographic maps?

Displaying variables that vary over space
Elevation can be measured at any point on land.
How is it visualized on geographic maps?

https://upload.wikimedia.org/wikipedia/commons/d/d9/Slovakia_general_relief_map.svg
https://en.wikipedia.org/wiki/Map#/media/File:Topographic_map_example.png

https://upload.wikimedia.org/wikipedia/commons/d/d9/Slovakia_general_relief_map.svg
https://en.wikipedia.org/wiki/Map#/media/File:Topographic_map_example.png

Isarithmic maps / isoline maps / heatmaps
Display a continuous variable over the map area (elevation, temperature etc.)

Value in each point can be shown by a color scale.
Some contour lines can be displayed as well.

A contour line (isoline, isopleth, isarithm, izočiara)
connects points of the same value.

Example: short-term forecasts from
the Slovak Hydrometeorological Institute.

https://www.shmu.sk/sk/?page=1&id=meteo_inca_base

https://www.shmu.sk/sk/?page=1&id=meteo_inca_base

Density of airports as a isarithmic map
We use kdeplot function from the Geoplot library.
KDE stands for kernel density estimation (next lecture).

Density of airports in Geoplot library

Choropleth maps (kartogramy)
These show numerical / categorical values for administrative regions (countries,
districts, etc.) via colors applied to the whole region.
Example: The number of airports in a country per 10000 km2

Types of variables over regions
Spatially extensive: apply to the unit as a whole. If we subdivide the region,
spatially extensive variable will be often the sum of its parts.
Examples: total population, area, the number of airports in the country

Spatially intensive: may stay the same if you divide the unit, provided the unit is
homogeneous without regional differences.
Examples: population density, life expectancy, GDP per person.

Spatially extensive variables are not appropriate for choropleths
(large value for a large country is visually attributed to each small subregion)

Computing airport stats per country in GeoPandas

Computing airport stats per country in GeoPandas

Drawing choropleth map in Plotly

Another intensive variable

The number of airports is extensive (not good)

The number of airports as a bubble plot (better)

Cartogram vs kartogram
A choropleth map is called kartogram in Slovak.

In English, cartogram is a map with regions rescaled according to some variable
Examples: World's Catholic Population by World Mapper
Levasseur's cartogram of country budgets

https://commons.wikimedia.org/wiki/File:Levasseur_cartogram.pnghttps://worldmapper.org/maps/catholic-population-2005/

https://commons.wikimedia.org/wiki/File:Levasseur_cartogram.png
https://worldmapper.org/maps/catholic-population-2005/

Summary of maps
● Many data sets contain geographic entities (countries, cities, coordinates)
● Displaying such data on maps shows spatial relationships
● Use appropriate equal-area projections
● Bubble plots: add points of various sizes
● Isarithmic maps / isoline maps / heatmaps: continuously varying variables
● Choropleth map: variables characterizing whole region

○ The variable should be intensive, e.g. normalized by area or population

Several useful libraries

● Geopandas for working with geographical data, extension of DataFrame
● Geoplot and Plotly for visualization

Part II: Graphs / networks

Graph / network
Vertices (vrcholy; also nodes, uzly) often real-world entities

Edges (hrany; also links, arcs) often relationships / connections between pairs of
vertices

Many real-world examples:
places connected by roads, computers connected by network cables,
people connected by family or work relationships,
companies connected by financial transactions, texts connected by references,
tasks or courses connected by dependencies,
any objects connected based on similarity / shared features, ...

Graphs are very important in both computer science and data science.

Example: dependencies between DAV courses

Graph / network (cont.)
Edges: Directed (orientované) or undirected (for symmetric relationships)
Recall: how did you define directed / undirected edges in discrete mathematics?

Graphs are covered in several courses: discrete mathematics, programming,
design of efficient algorithms, network science.

Trees
An undirected graph is called a tree if it is connected and without cycles.

In practice we usually encounter rooted (directed) trees,
which have a single root,
all other vertices
can be reached from the root
via a unique path.

Creates parent / child
relationships between nodes

Trees and hierarchies
Trees can express hierarchies in which each entity has a single direct superior
Examples:

Company structure in which each employee (except for the head of the company)
has a single supervisor (similarly army command)

Administrative divisions (country, region, district)

Species taxonomy
(animals, mammals, primates, ...)

More general hierarchies
Some hierarchies allow multiple direct superiors, for example:

● family tree where each person has two parents (and they may be distantly
related),

● geometrical shapes, where a square is both a special case of a regular
polygon and a special case of a rectangle and both of these are a special
case of a polygon.

These hierarchies can be represented as directed acyclic graphs

● Acyclic means that by following edges we never get back to the starting node
(nobody is their own ancestor).

What to study / visualize in real-life graphs?
Details of connections for a particular node
(requires zooming in large networks).

Overall structure of the graph: connected
components, density of edges, presence of cycles,
weak places (bridges and articulations), densely
connected clusters

Do nodes with some property cluster together? (Are
they connected by many edges?)

Example: character co-occurrence in Shakespeare

http://www.martingrandjean.ch/network-visualization-shakespeare/

http://www.martingrandjean.ch/network-visualization-shakespeare/

Basics of graph drawing
Vertices typically shown as markers (circles, rectangles etc.), possibly with labels,
size, color, ...

Edges shown as lines connecting them, possibly of different color or width. They
can be straight lines, arcs, polygonal lines or arbitrary curves.

Edge direction displayed as arrows
or all edges drawn to point in one direction,
e.g. downwards.

Desirable properties of a graph drawing
Nodes do not overlap.

Edges are not too long and
have a simple shape without
many bends.

The number of edge crossings
is small.

The graph uses the space of
the figure well without large
empty regions.

https://commons.wikimedia.org/wiki/File:UnitedStatesGraphViz.svg

https://commons.wikimedia.org/wiki/File:UnitedStatesGraphViz.svg

Node positioning in graph drawing
Sometimes the position of nodes is given
by their properties, e.g. on a map
(airline connections), level of a hierarchy,
timeline.

Otherwise we place nodes to optimize
desirable properties, e.g. using
force-directed layout, which assigns
attractive forces (springs) between nodes
connected by edges and repulsive forces
between other pairs of nodes.

https://commons.wikimedia.org/wiki/File:UnitedStatesGraphViz.svg

https://commons.wikimedia.org/wiki/File:UnitedStatesGraphViz.svg

Our hierarchy:
manually created
DataFrame of animals
Taxonomy of even-toed ungulates
(párnokopytníky)

Level along tree (1=leaves, 6=root)

Category: land / sea / group

NetworkX: library for working with graphs

Basic graph drawing in NetworkX

Improving the plot

Hierarchy as a treemap in Plotly Express

Interactive graphs in Pyvis
● Example from NetworkX: character

co-occurrence in Les Misérables by
Victor Hugo.

● Edges weighted by frequency

Summary of graphs
● Graphs important in many applications
● NetworkX library has many functions for working with graphs,

several layout algorithms for visualization
● Pyvis allows interactive visualization
● Plotly can visualize trees as treemaps

Part III: Time series

Time series (časové rady)
Sequences of measurements over time (regular or irregular time intervals).

Typically displayed as a line graph, with time as x-axis, time flowing from left to
right (a cultural convention in western countries).

Other options: bar graphs, heat maps, box plots, ...

https://commons.wikimedia.org/wiki/File:1786_Playfair_-_Chart_of_import_and_exports_of_England_to_and_from_all_N
orth_America_from_the_year_1770_to_1782.jpg https://en.wikipedia.org/wiki/File:T_comp_61-90.pdf

Recall:
Playfair 1786,
Mann, Bradley &
Hughes 1999

https://commons.wikimedia.org/wiki/File:1786_Playfair_-_Chart_of_import_and_exports_of_England_to_and_from_all_North_America_from_the_year_1770_to_1782.jpg
https://commons.wikimedia.org/wiki/File:1786_Playfair_-_Chart_of_import_and_exports_of_England_to_and_from_all_North_America_from_the_year_1770_to_1782.jpg
https://en.wikipedia.org/wiki/File:T_comp_61-90.pdf

Typical features of a time series
Overall trend (increasing / decreasing / flat; rate of change),

Seasonality (daily / weekly / yearly cycles),

Noise (general variability / outliers)

Two Google trend time series
Google trends compare frequency
of search terms over time and to each other.

Here we use Christmas-related terms
kapustnica and kapor.

https://trends.google.com/trends/

What can we see on the plot?
(trend, seasonality, noise)

Comparison of the two terms?

Search terms related to
kapor: zbgis kataster, zbgis
mapa, zgbis, katasterportal
list vlastnictva, dážďovka.

Trend: temperatures are growing in spring
Second dataset:
Maximum daily temperature values
from Piešťany January-June 2010,
from US National Oceanic
and Atmospheric Administration

Smoothing data (vyrovnanie, vyhladenie)
Our time series are quite noisy.

Two options for smoothing data:

Aggregating them in longer time intervals (e.g. months).

Sliding window (kĺzavé okno): we choose a window size w and compute a new
series, each value being mean or other summary of w consecutive windows in the
input.

For example with values 2,6,4,2,8,2 and window size 4, we get window means
3.5, 5, 4.

Smoothing Google trends by monthly aggregation

Smoothing temperatures by sliding window

Overlapping timescales to display seasonality /
showing uncertainty

Right: multiple years summarized as the mean and its 95% confidence interval
expressing uncertainty in the true value of the mean due to noise in data.

Importance of scales

Importance of scales

Relative scales

Right: monthly values relative to January
(can be used to compare trends even if overall values vary different)

One more pair of Google trend lines

Acknowledging missing values

Middle and right: values for 2010 and 2011 missing
Middle: missing values are not visible, misleading plot
Right: missing values are easy to spot

Summary of time series
Typical goals are to observe and study:

● overall trend (increasing / decreasing / flat; rate of change),
● seasonality (daily / weekly / yearly cycles),
● noise (general variability / outliers)

Useful techniques:

● smoothing by aggregation and sliding window
● overlapping timescales
● relative scales
● showing uncertainty and missing values

1 Lecture 6: Maps, graphs, time series
Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

1.1 Package installation
We need to install several packages which are not pre-installed in Colab.

[1]: ! pip install geoplot pyvis

[2]: # importing our usual libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from IPython.display import Markdown

new libraries for today:
geopandas is a library for working with geographical data
import geopandas as gpd
geoplot is a library for visualizing geographical data
import geoplot as gplt
we also will use a submodule of plotly
import plotly.graph_objects as go
networkx is a library for working with graphs and networks
import networkx as nx
Pyvis is a library for drawing networks
from pyvis.network import Network

1.2 Maps
1.2.1 Introduction

• Each map is a visualization of data about location of objects.
• Maps have a rich set of conventions about colors and symbols, orientation etc. This allows

us to quickly understand a map.

Examples:

• A topographic map from US looks similar to maps used in Slovakia, but striped lines are
typically used for railroads in Slovakia (example).

• A map of European countries from 1721 can still be easily read by today’s audience.

Data visualization in maps

• Maps visualizing data other than typical geographical features are usually called thematic
maps (tematické mapy).

1

http://bbrejova.github.io/viz/
https://en.wikipedia.org/wiki/Map#/media/File:Topographic_map_example.png
https://mapy.dennikn.sk/?zoom=13&lat=6147168.60859&lon=1891015.76613&layers=00B00FFFTTFTTTTFFFFFFFTTT
https://en.wikipedia.org/wiki/Europe#/media/File:Herman_Moll_A_New_Map_of_Europe_According_to_the_Newest_Observations_1721.JPG

• We will see several examples, for others see e.g. Wikipedia, GeoPlot library gallery.
• Also recall Snow’s map of cholera cases from the first lecture.

1.2.2 Map projection (kartografické zobrazenie)

• A map projection is a transformation to project the surface of a globe onto a plane.
• Each projection introduces some distortion.

Conformal projections preserve local angles, but distort other aspects, such as lengths, areas
etc.

• For example, Mercator projection (1569) was developed for navigation, but shows Greenland
bigger than Africa, while in fact it is 14x smaller.

Equal-area projections preserve areas (cannot be conformal at the same time).

• Equal-area projections are typically good for data visualization, as they make areas compa-
rable.

Orthographic projection is similar to a photograph of the Earth from a very distant point.

• It is not an equal-area projection, but our sense of perspective may compensate.
• It displays one hemisphere.

Recommended projections (Cairo, The Truthful Art):

• Whole world: e.g. Mollweide equal-area projection (1805)
• Continents / large countries: e.g. Lambert azimuthal equal-area projection (1772)
• Countries in mid-latitudes: e.g. Albers equal-area conic projection (1805)
• Polar regions: e.g. Lambert azimuthal equal-area projection (1772)

Examples of projections in Plotly

• Plotly allows us to set projections for our plot. Here we use it to illustrate the projections on
the map of continent outlines.

• The maps are interactive.

[3]: def show_world(projection, scope=None):
"""A function to display the whole Earth or a desired
area (scope) using a selected projection. Both arguments
are strings that name projections or scopes supported by Plotly."""
create a map figure with an empty scatterplot
fig = go.Figure(go.Scattergeo())
set the desired projection
fig.update_geos(projection_type=projection)
we can also limit the scope of the map
if scope is not None:
fig.update_geos(scope=scope)

finally, make the image smaller and with 0 margins
fig.update_layout(height=200, margin={"r":0,"t":0,"l":0,"b":0})
show the figure
fig.show()

2

https://en.wikipedia.org/wiki/Thematic_map
https://residentmario.github.io/geoplot/gallery/index.html
https://commons.wikimedia.org/wiki/File:Snow-cholera-map-1.jpg
https://plotly.com/python/map-configuration/#map-projections

[4]: display(Markdown("**Orthographic projection**"))
show_world("orthographic")

Orthographic projection

[5]: display(Markdown("**Mollweide equal-area projection**"))
show_world("mollweide")

Mollweide equal-area projection

[6]: display(Markdown("**Mercator conformal projection** (not recommended for data␣
↪visualization)"))

show_world("mercator")

Mercator conformal projection (not recommended for data visualization)

[7]: display(Markdown("**Lambert azimuthal equal-area projection**"))
show_world("azimuthal equal area", "europe")

Lambert azimuthal equal-area projection

1.2.3 Adding data as points and lines to a map

• Geographic coordinates of places can be projected as x and y. Additional values can be shown
using marker color and size or line color and width.

• We illustrate this using datasets of airport locations and airline connections.

Importing datasets

• The dataset of international airports of the world was downloaded from the World Bank
under the CC-BY 4.0 license, and preprocessed. It includes the number of seats within a
year, which is from unknown years, possibly not comparable between countries.

• Our preprocessed file is in GeoJSON format used for describing simple geographical features.
It contains both location data and other attributes.

• We parse the file using GeoPandas, which is a library for working with geographical data.
• It is an extension of Pandas DataFrame, with location information.
• Each row of the table contains one airport, with its 3-letter code, name, country, 3-letter code

of the country, the number of airplane seats per year and the location.

[8]: display(Markdown("**Importing the list of airports**"))
parse the file
airports = gpd.read_file("https://bbrejova.github.io/viz/data/airports.geojson")
show the first 5 rows
display(Markdown("**The first five rows:**"), airports.head())
show the total number of rows
display(Markdown(f"**The number of rows:** {airports.shape[0]}"))
display(Markdown("**International airports in Slovakia**"))
display(airports.query('Country == "Slovakia"'))

3

https://datacatalog.worldbank.org/search/dataset/0038117/Global-Airports
https://geojson.org/
https://geopandas.org/

Importing the list of airports

The first five rows:

Orig Name TotalSeats Country ISO3 \
0 HEA Herat 22041.971 Afghanistan AFG
1 JAA Jalalabad 6343.512 Afghanistan AFG
2 KBL Kabul International 1016196.825 Afghanistan AFG
3 KDH Kandahar International 39924.262 Afghanistan AFG
4 MZR Mazar-e-Sharif 58326.513 Afghanistan AFG

geometry
0 POINT (62.22670 34.20690)
1 POINT (70.50000 34.40000)
2 POINT (69.21390 34.56390)
3 POINT (65.84750 31.50690)
4 POINT (67.20830 36.70420)

The number of rows: 2173

International airports in Slovakia

Orig Name TotalSeats Country ISO3 \
1489 BTS M.R. Stefanik 1211732.116 Slovakia SVK
1490 ILZ Zilina 3986.360 Slovakia SVK
1491 KSC Barca 323259.132 Slovakia SVK
1492 PZY Piestany Airport 1403.892 Slovakia SVK
1493 SLD Sliac 11876.753 Slovakia SVK
1494 TAT Tatry/Poprad 39612.286 Slovakia SVK

geometry
1489 POINT (17.21670 48.16670)
1490 POINT (18.76670 49.23330)
1491 POINT (21.25000 48.66670)
1492 POINT (17.83330 48.63330)
1493 POINT (19.13330 48.63330)
1494 POINT (20.24030 49.07190)

• We will later need a datasets of coutry boundaries proved by Natural Earth.
• Below we estimate country area from its low resolution borders. For example, area of Slovakia

estimated as 47070km2, while World Bank lists as 49030km2.

[9]: # read world countries as a dataset provided by Natural Earth
countries = gpd.read_file("https://bbrejova.github.io/viz/data/

↪country_boundaries.geojson")
set 3-letter code as the index
countries = countries.set_index('ISO3')
estimate country area in square km from geometry
first the geometry is projected by equal-area projection
the result is in square meters, converted to squared km (divide by 1e6)

4

https://www.naturalearthdata.com/downloads/110m-cultural-vectors/110m-admin-0-countries/

beware that areas are approximate due to low resolution borders
country_areas = countries['geometry'].to_crs({'proj':'cea'}).area / 1e6
add areas to countries
countries['Area'] = country_areas

display(Markdown("**Table of countries of the world**"))
display(countries.head())
display(Markdown("**Data for Slovakia**"))
display(countries.loc['SVK', :])

Table of countries of the world

Type Name Population \
ISO3
FJI Sovereign country Fiji 889953.0
TZA Sovereign country Tanzania 58005463.0
B28 Indeterminate W. Sahara 603253.0
CAN Sovereign country Canada 37589262.0
USA Country United States of America 328239523.0

Region \
ISO3
FJI East Asia & Pacific
TZA Sub-Saharan Africa
B28 Middle East & North Africa
CAN North America
USA North America

geometry Area
ISO3
FJI MULTIPOLYGON (((180.00000 -16.06713, 180.00000… 1.928760e+04
TZA POLYGON ((33.90371 -0.95000, 34.07262 -1.05982… 9.327793e+05
B28 POLYGON ((-8.66559 27.65643, -8.66512 27.58948… 9.666925e+04
CAN MULTIPOLYGON (((-122.84000 49.00000, -122.9742… 1.003773e+07
USA MULTIPOLYGON (((-122.84000 49.00000, -120.0000… 9.509851e+06

Data for Slovakia

Type Sovereign country
Name Slovakia
Population 5454073.0
Region Europe & Central Asia
geometry POLYGON ((22.558137648211755 49.08573802346714…
Area 47069.779734
Name: SVK, dtype: object

All airports as points using Plotly

• We use scatter_geo function from Plotly Express.

5

https://plotly.com/python/bubble-maps/

• We set parts of geometry column as latitude and longitude. Column Name is used as a tooltip.

[10]: fig = px.scatter_geo(
airports,
lat=airports.geometry.y,
lon=airports.geometry.x,
hover_name="Name",
projection="mollweide"
)

fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
fig.show()

Adding the size of the airport

• We use size of the circle to represent the number of seats.
• Scatterplots with point sizes are often called bubble graphs.
• We focus on Europe, add country borders and change the projection.

[11]: fig = px.scatter_geo(
airports,
lat=airports.geometry.y,
lon=airports.geometry.x,
size="TotalSeats",
hover_name="Name"
)

fig.update_geos(
projection_type="azimuthal equal area",
lonaxis_range= [-20, 40],
lataxis_range= [20, 70],
showcountries = True

)
fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
fig.show()

Airline connections from Slovakia as lines

• We import another table (originating from World bank as above), which shows international
airline connections from Slovak airports (in an unknown year).

• Each connection is given by two airport codes, the number of airplane seats within a year,
and geometry with a segment connecting the two airport locations.

• Line color will correspond to the airport of origin in Slovakia.

• The code is adapted from examples in the Plotly documentation.

[12]: display(Markdown("**Importing airline connections**"))
connections = gpd.read_file("https://bbrejova.github.io/viz/data/

↪airport_pairs_svk.geojson")

6

https://plotly.com/python/lines-on-maps/
https://plotly.com/python-api-reference/generated/plotly.express.line_geo.html

display(connections.head())

Importing airline connections

OrigCode DestCode TotalSeats \
0 BTS ADB 7370.433
1 BTS AGP 15152.501
2 BTS AHO 14740.866
3 BTS AQJ 3275.748
4 BTS ATH 19654.488

geometry
0 LINESTRING (17.21670 48.16670, 27.15620 38.29430)
1 LINESTRING (17.21670 48.16670, -4.49810 36.67170)
2 LINESTRING (17.21670 48.16670, 8.28890 40.63060)
3 LINESTRING (17.21670 48.16670, 35.01940 29.61250)
4 LINESTRING (17.21670 48.16670, 23.94440 37.93640)

[13]: def draw_lines(connections):
create two lists with x and y coordinates of polylines
separated by None
lats = []
lons = []
also create lists of origin and destination codes parallel to lists above
origCodes = []
destCodes = []

iterate through table rows
for index, row in connections.iterrows():

get lists of x and y coordinates (of length 2 in this case)
x, y = row['geometry'].xy
add coordinates and None separator to lists
lats.extend(list(y) + [None])
lons.extend(list(x) + [None])
add airport codes for each coordinate and None separator
origCodes.extend([row['OrigCode']] * len(x) + [None])
destCodes.extend([row['DestCode']] * len(x) + [None])

create figure with these lists
fig = px.line_geo(lat=lats, lon=lons, hover_name=destCodes, color=origCodes)
setup projection
fig.update_geos(
projection_type="azimuthal equal area",
lonaxis_range= [-25, 55],
lataxis_range= [10, 60],
showcountries = True

)
fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})

7

fig.show()

call the function to draw the map
display(Markdown("**Airline connections from Slovak airports**"))
draw_lines(connections)

Airline connections from Slovak airports

1.2.4 Isarithmic maps / isoline maps / heatmaps

• These maps display a continuous variable over the map area (elevation, temperature and
other weather phenomena etc.).

• Value in each point can be shown by a color scale.
• Some contour lines can be displayed as well.
• A contour line (isoline, isopleth, isarithm, izočiara) connects points of the same value.
• Example: short-term forecasts from the Slovak Hydrometeorological Institute.

Density of airports

• Here we show world airports as both points and their local density as a isarithmic map.
• This is achieved using kdeplot function from the Geoplot library.
• KDE stands for kernel density estimation, and we will explain it in the next lecture.

[14]: # plot countries as a background
ax = gplt.polyplot(

countries.explode(index_parts=True),
edgecolor='white',
facecolor='darkgray',
figsize=(10, 5),

)
plot semi-transparent isarithmic map
gplt.kdeplot(

airports, cmap='viridis',
fill=True, alpha=0.5, ax=ax

)
plot points on top
gplt.pointplot(airports, s=1, color='black', ax=ax)
pass

8

https://www.shmu.sk/sk/?page=1&id=meteo_inca_base
https://residentmario.github.io/geoplot/plot_references/plot_reference.html#kdeplot

1.2.5 Choropleth maps (kartogramy)

• Often we have numerical / categorical values for administrative regions (countries, districts,
etc.).

• Choropleth maps show such variables via colors applied to the whole region.

Variables over regions:

• Spatially extensive variables apply to the unit as a whole (e.g. total population, area, the
number of airports in the country). If we subdivide the region, spatially extensive variable
will be often the sum of its parts (but not always, e.g. perimeter)

• Spatially intensive variables may stay the same if you divide the unit, provided the unit
is homogeneous without regional differences. Examples include population density, life ex-
pectancy, GDP per person.

• Spatially extensive variables are not appropriate for choropleths, because large value for a
large country is visually attributed to each small subregion of the country. If counts are of
interest, better use a bubble graph with marker of appropriate size in the region center.

Beware:

• A choropleth map is called kartogram in Slovak.
• English word cartogram means a map with regions rescaled according to some variable (such

as the Levasseur’s cartogram of country budgets and a modern example).

Choropleth maps of airports per country We will show three choropleth maps:

• the number of airports per 10000 km2 (spatially intensive variable),
• the number of airports per million inhabitants (also spatially intensive),
• the number of airports (spatially extensive, not recommended for choropleth), We will also

show the number of airports as a bubble graph (more appropriate than extensive variable).

All choropleth maps are created by Plotly. The bubble graph is also created by plotly, and the
bubble is placed to the representative point of each country.

[15]: # compute the number of airports per country by groupby
airports_per_country = airports.groupby('ISO3').size()
add the new column to a copy of the old table
countries2 = countries.copy(deep=True)
add the number of airports as a new column
countries2['Airports'] = airports_per_country
remove countries where airports or location are missing
countries2.dropna(subset=['geometry', 'Airports'], inplace=True)
add columns with airport density and airports per million people
countries2['Airport_density'] = (countries2['Airports']

/ countries2['Area'] * 10000)
countries2['Airports_per_mil'] = (countries2['Airports']

/ countries2['Population'] * 1e6)
show the new table

9

https://bbrejova.github.io/viz/pdf/L01a_visualization_history.pdf
https://worldmapper.org/maps/catholic-population-2005/
https://plotly.com/python/choropleth-maps/
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoSeries.representative_point.html

display(Markdown("**The first five rows of `countries2` table:**"))
display(countries2.head())
display(Markdown("**The values for Slovakia:**"))
display(countries2.loc['SVK'])

The first five rows of countries2 table:

Type Name Population \
ISO3
FJI Sovereign country Fiji 889953.0
TZA Sovereign country Tanzania 58005463.0
CAN Sovereign country Canada 37589262.0
USA Country United States of America 328239523.0
KAZ Sovereignty Kazakhstan 18513930.0

Region \
ISO3
FJI East Asia & Pacific
TZA Sub-Saharan Africa
CAN North America
USA North America
KAZ Europe & Central Asia

geometry Area \
ISO3
FJI MULTIPOLYGON (((180.00000 -16.06713, 180.00000… 1.928760e+04
TZA POLYGON ((33.90371 -0.95000, 34.07262 -1.05982… 9.327793e+05
CAN MULTIPOLYGON (((-122.84000 49.00000, -122.9742… 1.003773e+07
USA MULTIPOLYGON (((-122.84000 49.00000, -120.0000… 9.509851e+06
KAZ POLYGON ((87.35997 49.21498, 86.59878 48.54918… 2.728701e+06

Airports Airport_density Airports_per_mil
ISO3
FJI 2.0 1.036935 2.247310
TZA 7.0 0.075045 0.120678
CAN 82.0 0.081692 2.181474
USA 291.0 0.305998 0.886548
KAZ 17.0 0.062301 0.918228

The values for Slovakia:

Type Sovereign country
Name Slovakia
Population 5454073.0
Region Europe & Central Asia
geometry POLYGON ((22.558137648211755 49.08573802346714…
Area 47069.779734
Airports 6.0
Airport_density 1.274703

10

Airports_per_mil 1.100095
Name: SVK, dtype: object

[16]: def draw_choropleth(data, column, range_color=None, label=None):
fig = px.choropleth(
data, locations=data.index, color=column,
range_color=range_color,
labels={column:label},
hover_name="Name",
projection = "mollweide"

)
fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
fig.show()

display(Markdown("**The number of airports per 10000 squared km**"))
draw_choropleth(countries2, 'Airport_density', (0, 2), 'airports / 10000 km2')

The number of airports per 10000 squared km

[17]: display(Markdown("**The number of airports per million inhabitans**"))
draw_choropleth(countries2, 'Airports_per_mil', (0, 5), 'airports / million␣

↪people')

The number of airports per million inhabitans

[18]: display(Markdown("**The number of airports in a country**"))
draw_choropleth(countries2, 'Airports', (0, 100), 'airports')

The number of airports in a country

[19]: # make a new table of countries in which geometry is replaced
with a single representative point
countries3 = countries2.copy(deep=True)
countries3['geometry'] = countries2['geometry'].representative_point()

plot as a bubble plot
display(Markdown("**The number of airports in a country**"))
fig = px.scatter_geo(

countries3,
lat=countries3.geometry.y,
lon=countries3.geometry.x,
size="Airports",
hover_name="Name",
projection = "mollweide"
)

fig.update_geos(showcountries = True)
fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
fig.show()

11

The number of airports in a country

1.2.6 Summary of maps

• Many data sets contain geographic entities (countries, cities, coordinates).
• Displaying such data on maps highlights spatial relationships.
• In your maps, use appropriate equal-area projections.

Types of thematic maps:

• Bubble plots contain points of various sizes and colors.
• Isarithmic maps / isoline maps / heatmaps display continuously varying variables, such as

elevation or temperature using color scales or isolines.
• Choropleth map display variables characterizing whole region using colors. The variable used

in choropleth should be intensive, e.g. normalized by area or population.

Several useful libraries:

• Geopandas for working with geographical data, extension of DataFrame
• Geoplot and Plotly for visualization

1.3 Graphs and hierarchies
1.3.1 Graphs

• A graph / network consists of vertices (vrcholy; also nodes, uzly) and edges (hrany; also
links, arcs).

• Vertices often represent real-world entities.
• Edges often represent relationships and connections between pairs of vertices.

Many real-world examples of graphs: places connected by roads, computers connected by network
cables, people connected by family or work relationships, companies connected by financial trans-
actions, texts connected by references, tasks or courses connected by dependencies, any objects
connected based on similarity / shared features.

• Edges can be directed (orientované) or undirected depending on whether the relationship is
symmetrical.

• Recall: how did you define directed / undirected edges in discrete mathematics?

Graphs are very important in both computer science and data science. They are covered in several
courses: discrete mathematics, programming, design of efficient algorithms, network science.

1.3.2 Trees and hierarchies

• An undirected graph is called a tree if it is connected and without cycles.
• In practice we usually encounter rooted (directed) trees, which have a single root, all other

vertices can be reached from the root via a unique path.
• This gives rise to parent / child relationships between nodes (parent is the node closer to the

root).
• Trees can express hierarchies in which each entity has a single direct superior, for example:

– company structure in which each employee (except for the head of the company) has a
single supervisor (similarly army command),

– administrative divisions (country, region, district),

12

– species taxonomy (animals, mammals, primates, …).
• However some hierarchies allow multiple direct superiors, for example:

– family tree where each person has two parents (and they may be distantly related),
– geometrical shapes, where a square is both a special case of a regular polygon and a

special case of a rectangle and both of these are a special case of a polygon.
• These hierarchies can be represented as directed acyclic graphs.

– Acyclic means that by following edges we never get back to the starting node (nobody
is their own ancestor).

1.3.3 What do we study / visualize in real-life graphs?

• Details of connections for a particular node (requires zooming in large networks).
• Overall structure of the graph: connected components, density of edges, presence of cycles,

weak places (bridges and articulations), clusters of densely connected nodes.
• Do nodes with some property cluster together? (Are they connected by many edges?)

See for example character co-occurrence in Shakespeare’s tragedies.

1.3.4 Basics of graph drawing

• Vertices are typically displayed as markers (circles, rectangles etc.), possibly with labels, size,
color, …

• Edges are displayed as lines connecting them, possibly of different color or width. They can
be straight lines, arcs, polygonal lines or arbitrary curves.

• Edge direction displayed as arrows or in a hierarchy edges may be drawn to point in one
direction, e.g. downwards.

Desirable properties:

• Nodes do not overlap.
• Edges are not too long and have a simple shape without many bends.
• The number of edge crossings is small.
• The graph uses the space of the figure well without large empty regions.

Node positioning:

• Sometimes the position of nodes is given by their properties, e.g. on a map (see airline
connections), level of a hierarchy, timeline.

• Otherwise we try to place nodes to optimize desirable properties, e.g. using force-directed lay-
out, which assigns attractive forces (springs) between nodes connected by edges and repulsive
forces between other pairs of nodes.

Examples:

• https://en.wikipedia.org/wiki/Graphviz#/media/File:UnitedStatesGraphViz.svg
• https://upload.wikimedia.org/wikipedia/commons/9/90/Visualization_of_wiki_structure_using_prefuse_visualization_package.png

1.3.5 Displaying a simple hierarchy in NetworkX

• We start by creating a simple tree representing taxonomy of selected even-toed ungulates
(párnokopytníky) as a Pandas DataFrame.

13

http://www.martingrandjean.ch/network-visualization-shakespeare/

• Each row of the data frame describes each node, giving its name, parent, level along the tree
(leaves are 1, root is 5) and category, which is land for land animals, sea for sea animals and
group for taxonomy groups.

• Group Artiodactyla is the root without a parent.

[20]: from io import StringIO

animal_csv = StringIO("""name,parent,level,category
camel,Artiodactyla,1,land
pig,Artiofabula,1,land
sheep,Caprinae,1,land
goat,Caprinae,1,land
cow,Bovidae,1,land
dolphin,Cetacea,1,sea
whale,Cetacea,1,sea
hippopotamus,Whippomorpha,1,land
Caprinae,Bovidae,2,group
Cetacea,Whippomorpha,2,group
Bovidae,Cetruminantia,3,group
Whippomorpha,Cetruminantia,3,group
Cetruminantia,Artiofabula,4,group
Artiofabula,Artiodactyla,5,group
Artiodactyla,,6,group""")

animals = pd.read_csv(animal_csv)
animals['category'] = animals['category'].astype('category')
display(animals)

name parent level category
0 camel Artiodactyla 1 land
1 pig Artiofabula 1 land
2 sheep Caprinae 1 land
3 goat Caprinae 1 land
4 cow Bovidae 1 land
5 dolphin Cetacea 1 sea
6 whale Cetacea 1 sea
7 hippopotamus Whippomorpha 1 land
8 Caprinae Bovidae 2 group
9 Cetacea Whippomorpha 2 group
10 Bovidae Cetruminantia 3 group
11 Whippomorpha Cetruminantia 3 group
12 Cetruminantia Artiofabula 4 group
13 Artiofabula Artiodactyla 5 group
14 Artiodactyla NaN 6 group

• NetworkX is a large library for working with graphs, it implements many graph algorithms.
• Below we convert our DataFrame to Graph class from NetworkX by adding nodes and edges.
• Nodes and edges can have arbitrary attributes attached, here level and category.

14

https://networkx.org/documentation/stable/index.html

• Then we plot basic representation of the graph.
• The plotting works in two steps: first we compute coordinates of all nodes using

multipartite_layout.
• Then we plot the network using draw_networkx into Matplotlib axes.
• The plot is not very nice, we will improve it below.

[21]: # create empty graph in NetworkX
G = nx.Graph()

adding each table row as a node
for index, row in animals.iterrows():

G.add_node(row['name'], level=row['level'], category=row['category'])

adding an edge to each node from its parent
for index, row in animals.iterrows():

if row['parent'] is not np.nan:
G.add_edge(row['parent'], row['name'])

computing coordinates of nodes
coordinates = nx.multipartite_layout(G, subset_key="level", align='horizontal')
drawing the graph
(figure, axes) = plt.subplots(figsize=(10, 6))
nx.draw_networkx(G, coordinates, ax=axes)

pass

• Below we show an improved version of the plot.
• Two nodes are moved manually to reduce overlaps.
• Edges are plotted first.
• Then we draw node lables as boxes with text.
• Each category of nodes is draw separately with a different background color.

15

https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.multipartite_layout.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html

[22]: # again compute coordinates and move some of them manually
coordinates2 = nx.multipartite_layout(G, subset_key="level", align='horizontal')
coordinates2["Whippomorpha"] += (-0.05, 0)
coordinates2["Cetacea"] += (-0.08, 0)

plot edges only, omit nodes for now
(figure, axes) = plt.subplots(figsize=(10, 6))
nx.draw_networkx_edges(G, coordinates2, ax=axes)

plot each category of nodes by a different color
color_dict = {'group':'lightgray', 'land':'lightgreen', 'sea':'lightblue'}
for category in color_dict:

create a list of nodes on the category
category_nodes = [v for v in G.nodes if G.nodes[v]['category']==category]
select subgraph H of G
H = G.subgraph(category_nodes)
create a dictionary of node label attributes
label_options = {"ec": "black", "fc": color_dict[category], "alpha": 0.7}
draw the node labels as boxes
nx.draw_networkx_labels(H, coordinates2, font_size=12, bbox=label_options,␣

↪ax=axes)

pass

1.3.6 Hierarchy as a treemap in Plotly Express

• PlotlyExpress can be used to easily create treemaps.
• Leaves of the tree are empty labeled rectangles, upper categories are enclosing boxes.
• To select box colors, we use color_dict created above.

16

https://plotly.com/python/treemaps/

[23]: import plotly.express as px
fig = px.treemap(

names=animals['name'],
parents=animals['parent'],
color=animals['category'],
color_discrete_map=color_dict

)
fig.show()

1.3.7 Book character connections in Pyvis

• Here we use an example network from the NetworkX library.
• It represents character co-occurence in the novel Les Misérables by Victor Hugo.
• Edges are weighted by how often characters co-occur.
• To make the plot interactive, we use Pyvis library.
• We convert NetworkX graph to Network class from Pyvis.
• We add two new features for each node: title (used as a tooltip, name of the character) and

value (used as a size of the node, representing its number of neighbors, i.e. degree).
• Visualization is saved as a HTML file which is then displayed using HTML class from IPython

library.

[24]: # initializing an empty network, setup plot properties
pyvis_net = Network("500px", "500px", notebook=True, cdn_resources='in_line')
loading network from NetworkX
pyvis_net.from_nx(nx.les_miserables_graph())

get a dictionary of neighbors for each node
neighbors = pyvis_net.get_adj_list()
add additional node properties
used as tooltip and size
for node in pyvis_net.nodes:

node["title"] = node["id"]
node["value"] = len(neighbors[node["id"]])

saving the visualization in an html file
pyvis_net.show("net.html")
displaying the html file in the notebook
from IPython.display import display, HTML
display(HTML('net.html'))
pass

net.html

1.3.8 Summary of graphs

• Graphs are important in many applications.
• NetworkX library has many functions for working with graphs, including several layout algo-

rithms for visualization.

17

https://networkx.org/documentation/stable/reference/generated/networkx.generators.social.les_miserables_graph.html#networkx.generators.social.les_miserables_graph
https://pyvis.readthedocs.io/en/latest/
https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.HTML

• Pyvis allows interactive visualization of graphs.
• Plotly can visualize trees as treemaps.

1.4 Time series (časové rady)
• Time series are sequences of measurements or values over time (in regular or irregular time

intervals).
• Typically displayed as a line graph, with time as x-axis, time flowing from left to right (a

cultural convention in western countries).
• Other options for drawing time series exist (bar graphs, heat maps, box plots, …).

Typical features of a time series:

• overall trend (increasing / decreasing / flat; rate of change),
• seasonality (daily / weekly / yearly cycles),
• noise (general variability / outliers)

We have seen some examples in the first lecture:

• Playfair’s atlas, foreign trade
• Hockey stick graph of global temperature (Fig.3a)

1.4.1 Two Google trend time series

• Google trends allow users to compare frequency of search terms over time and to each other.
• Here we use Christmas-related terms kapustnica and kapor.

[25]: url = "https://bbrejova.github.io/viz/data/kapustnica-kapor.csv"
trends1 = pd.read_csv(url, parse_dates=['week']).set_index('week')
display(trends1.head())

kapustnica kapor
week
2019-01-06 3 15
2019-01-13 2 14
2019-01-20 3 17
2019-01-27 2 18
2019-02-03 2 13

[26]: axes = sns.lineplot(trends1, dashes=False)
axes.set_ylabel("Frequency of the term (weekly values)")
axes.set_title("Google trends for two search terms")
rotate tick labels
axes.tick_params(axis='x', labelrotation = 45)
pass

18

https://commons.wikimedia.org/wiki/File:1786_Playfair_-_Chart_of_import_and_exports_of_England_to_and_from_all_North_America_from_the_year_1770_to_1782.jpg
http://www.geo.umass.edu/faculty/bradley/mann1999.pdf
https://trends.google.com/

• With kapustnica we see a clear seasonal trend.
• But kapor behaves differently. As related search terms Google reports zbgis kataster, zbgis

mapa, zgbis, katasterportal list vlastnictva, dážďovka. Can you explain this?

1.4.2 Smoothing data (vyrovnanie, vyhladenie)

• Time series above is measured weekly and is quite noisy.
• We can smooth the data e.g. by aggregating them in longer time intervals. Here we compute

mean value in each month (4 or 5 weeks).
• This is done using resample method from Pandas.
• An alternative is to use a sliding window (kĺzavé okno), where we choose a window size.

e.g. 4 weeks and compute a new series, each value being mean or other summary of 4 consec-
utive windows in the input.

• For example with values 2,6,4,2,8,2 and window size 4, we get window means 3.5, 5, 4.

[27]: # aggregate google trends from weekly to monthly mean (ME means month-end, in␣
↪older versions use M)

trends1monthly = trends1.resample('ME').mean()
display(Markdown("**New table of monthly means** (the first 5 rows)"))
display(trends1monthly.head())
display(Markdown("**The number of values aggregated in each month** (the first␣

↪5 values)"))
display(trends1.resample('ME').size().head())

New table of monthly means (the first 5 rows)

kapustnica kapor
week

19

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html

2019-01-31 2.50 16.0
2019-02-28 1.75 13.5
2019-03-31 1.60 15.2
2019-04-30 2.75 13.0
2019-05-31 2.00 12.0

The number of values aggregated in each month (the first 5 values)

week
2019-01-31 4
2019-02-28 4
2019-03-31 5
2019-04-30 4
2019-05-31 4
Freq: ME, dtype: int64

[28]: axes = sns.lineplot(trends1monthly, dashes=False)
axes.set_ylabel("Frequency of the term (monthly means)")
axes.set_title("Google trends for two search terms")
axes.tick_params(axis='x', labelrotation = 45)
pass

1.4.3 Trend: temperatures are growing in spring

• We will also look at a dataset displaying a trend: series of temperature values from Piešťany
from January to June 2010, downloaded from US National Oceanic and Atmospheric Admin-
istration.

• We show both the original data and values smoothed with rolling average.

20

https://www.ncdc.noaa.gov/cdo-web/
https://www.ncdc.noaa.gov/cdo-web/

[29]: # read a dataset of temperatures in Piestany
url="https://bbrejova.github.io/viz/data/piestany-weather.csv"
weather = pd.read_csv(url, parse_dates=['DATE']).set_index('DATE')
select only columns with daily maximum temperatures
temperature = weather["TMAX"]
select only period from January to June 2010
spring2010 = temperature[pd.Timestamp('2010-01-01'):pd.Timestamp('2010-06-30')]
display(spring2010)

DATE
2010-01-01 7.8
2010-01-02 1.8
2010-01-03 -1.1
2010-01-04 -1.4
2010-01-05 -1.1

…
2010-06-26 NaN
2010-06-27 25.0
2010-06-28 27.8
2010-06-29 28.2
2010-06-30 29.5
Name: TMAX, Length: 181, dtype: float64

[30]: # compute rolling averages in a window of 5 and 30 days
spring2010rolling5 = spring2010.rolling(5, min_periods=2).mean()
spring2010rolling30 = spring2010.rolling(30, min_periods=10).mean()
spring2010rolling5.head(10)

[30]: DATE
2010-01-01 NaN
2010-01-02 4.800000
2010-01-03 2.833333
2010-01-04 1.775000
2010-01-05 1.200000
2010-01-06 -0.200000
2010-01-07 -0.460000
2010-01-08 -0.300000
2010-01-09 1.125000
2010-01-10 1.866667
Name: TMAX, dtype: float64

[31]: (figure, axes) = plt.subplots(3, 1, figsize=(6, 10))
sns.lineplot(spring2010, ax=axes[0])
sns.lineplot(spring2010rolling5, ax=axes[1])
sns.lineplot(spring2010rolling30, ax=axes[2])
axes[0].set_title("Temperature in Piešťany: Original daily values")
axes[1].set_title("5-day rolling average")

21

axes[2].set_title("30-day rolling average")
for i in range(3):

axes[i].set_ylabel("Daily max. temperature °C")
axes[i].set_xlabel(None)

figure.tight_layout(pad=1.0)
pass

22

1.4.4 Overlapping timescales to display seasonality

• We can better see cyclical trends if we plot each cycle on the same x-axis scale.
• In our Google example, we will use the month as the x axis and plot individual years as lines.

[32]: # convert monthly table to long format with separate rows for kapustnica and␣
↪kapor

trends1monthlyLong = trends1monthly.reset_index().melt(id_vars=['week'])
trends1monthlyLong.rename(columns={'variable':'term', 'value':'frequency'},␣

↪inplace=True)
create separate columns with year and month
trends1monthlyLong['month'] = trends1monthlyLong['week'].dt.month
trends1monthlyLong['year'] = trends1monthlyLong['week'].dt.year
display(Markdown("**Monthly table in the long format**"))
display(trends1monthlyLong)

Monthly table in the long format

week term frequency month year
0 2019-01-31 kapustnica 2.50 1 2019
1 2019-02-28 kapustnica 1.75 2 2019
2 2019-03-31 kapustnica 1.60 3 2019
3 2019-04-30 kapustnica 2.75 4 2019
4 2019-05-31 kapustnica 2.00 5 2019
.. … … … … …
91 2022-08-31 kapor 9.25 8 2022
92 2022-09-30 kapor 10.50 9 2022
93 2022-10-31 kapor 9.00 10 2022
94 2022-11-30 kapor 9.25 11 2022
95 2022-12-31 kapor 13.25 12 2022

[96 rows x 5 columns]

[33]: # use month as x, separate years by line style and search terms by color
axes = sns.lineplot(trends1monthlyLong, x='month', y='frequency', hue='term',␣

↪style='year')
axes.set_title("Google trends for two search terms in different years")
axes.set_ylabel("Frequency of the term, monthly average")
pass

23

• We can see that across years the trend is quite stable.
• Below we see another version of the figure where multiple lines for years are replaced with

mean and its 95% confidence interval expressing our uncertainty in the true value of the mean
due to noise in data.

[34]: axes = sns.lineplot(trends1monthlyLong, x='month', y='frequency', hue='term')
axes.set_title("Monthly changes in Google trends for two search terms")
axes.set_ylabel("Monthly frequency of the term\nmean over 2019-2022 + 9%% conf.␣

↪int.")
pass

24

1.4.5 Importance of scales

• The plot below shows that if we do not start y axis at 0, differences in kapor searches may
appear exaggerated.

• The next two plots show that even with y axis starting at 0, the time series may appear more
variable with narrower aspect ratio of the figure.

[35]: kapor = trends1monthlyLong.query("term=='kapor'")
axes = sns.lineplot(kapor, x='month', y='frequency')
axes.set_title("Google trends for kapor summarized over 2019-2022\n(y axis␣

↪starts at 0)")
axes.set_ylabel("Frequency of the term, monthly average")
axes.set_ylim(ymin=0)
pass

[36]: axes = sns.lineplot(kapor, x='month', y='frequency')
axes.set_title("Google trends for kapor summarized over 2019-2022\n(y axis not␣

↪fixed)")
axes.set_ylabel("Frequency of the term, monthly average")
pass

25

[37]: (figure, axes) = plt.subplots(figsize=(2,5))
sns.lineplot(kapor, x='month', y='frequency', ax=axes)
axes.set_title("Google trends for kapor summarized over 2019-2022\n(narrow␣

↪figure)")
axes.set_ylabel("Frequency of the term, monthly average")
axes.set_ylim(ymin=0)
pass

26

[38]: (figure, axes) = plt.subplots(figsize=(10,5))
sns.lineplot(kapor, x='month', y='frequency', ax=axes)
axes.set_title("Google trends for kapor summarized over 2019-2022\n(wide␣

↪figure)")
axes.set_ylabel("Frequency of the term, monthly average")
axes.set_ylim(ymin=0)
pass

27

1.4.6 Relative scales

• When we care about rate of increase or decrease, it might be better to express values as a
percentage compared to initial value.

• Here we compare values in each month with values in January of the same year.
• In this way even two time series with quite different values can be plotted in the same plot

(e.g. revenue of a small and a large company and their relative changes within a year).

[39]: # compute relative values by transforming each group of monthly values
by dividing them by the first value (January)
relValue = (trends1monthlyLong.groupby(['year','term'])['frequency']

.transform(lambda x : x * 100 / x.iloc[0]))
add relative values as a column to the long table
relTable = trends1monthlyLong.assign(relValue=relValue)
display(Markdown("**Relative values added**"))
relTable.head()

Relative values added
[39]: week term frequency month year relValue

0 2019-01-31 kapustnica 2.50 1 2019 100.0
1 2019-02-28 kapustnica 1.75 2 2019 70.0
2 2019-03-31 kapustnica 1.60 3 2019 64.0
3 2019-04-30 kapustnica 2.75 4 2019 110.0
4 2019-05-31 kapustnica 2.00 5 2019 80.0

[40]: axes = sns.lineplot(relTable, x='month', y='relValue', hue='term')
axes.set_ylim(ymin=0, ymax=300)
axes.axhline(100, color="gray", alpha=0.2)
axes.set_title("Google trends for two search terms summarized over 2019-2022")
axes.set_ylabel("Relative frequency of the term compared to January\nclipped at␣

↪300%")

pass

28

1.4.7 One more pair of Google trend lines

• Again very seasonal: lyže and vlek.
• This time we have monthly data over a longer period of time.
• We display the original data as well as yearly seasonal trend.
• The peak month is January for both queries, so we also display January values changing over

the years.

[41]: url = "https://bbrejova.github.io/viz/data/lyze-vlek.csv"
trends2 = pd.read_csv(url, parse_dates=['month']).set_index('month')
display(trends2.head())

lyže vlek
month
2007-01-01 28 6
2007-02-01 48 10
2007-03-01 0 3
2007-04-01 5 0
2007-05-01 0 0

[42]: axes = sns.lineplot(trends2, dashes=False)
axes.set_title("Google trends for two search terms")
axes.set_ylabel("Frequency of the term (monthly values)")
rotate tick labels
axes.tick_params(axis='x', labelrotation = 45)
pass

29

[43]: trends2long = trends2.reset_index().melt(id_vars=['month'])
trends2long.rename(columns={'month':'date','variable':'term', 'value':

↪'frequency'}, inplace=True)
trends2long['month'] = trends2long['date'].dt.month
trends2long['year'] = trends2long['date'].dt.year
display(trends2long)

date term frequency month year
0 2007-01-01 lyže 28 1 2007
1 2007-02-01 lyže 48 2 2007
2 2007-03-01 lyže 0 3 2007
3 2007-04-01 lyže 5 4 2007
4 2007-05-01 lyže 0 5 2007
.. … … … … …
379 2022-08-01 vlek 1 8 2022
380 2022-09-01 vlek 0 9 2022
381 2022-10-01 vlek 1 10 2022
382 2022-11-01 vlek 1 11 2022
383 2022-12-01 vlek 8 12 2022

[384 rows x 5 columns]

[44]: axes = sns.lineplot(trends2long, x='month', y='frequency', hue='term')
axes.set_title("Google trends for two search terms summarized over 2007-2022")
axes.set_ylabel("Frequency of the term, monthly average")
pass

30

[45]: lyzeJan = trends2long.query("month==1")
axes = sns.lineplot(lyzeJan, x='year', y='frequency', hue='term')
axes.set_ylim(ymin=0)
axes.set_title("Google trends for two search terms in January, 2007-2022")
axes.set_ylabel("Frequency of the term, monthly average")

pass

31

The drop in 2021 was due to pandemics, but what about 2014 and 2018?

1.4.8 Acknowledging missing values

• Let us imagine that January values for 2010 and 2011 are missing.
• If we draw a lineplot in Seaborn, years 2009 and 2012 are connected by a straight line and

viewer does not know that something is missing.
• This is not a good idea.
• Below we use pointplot which nicely shows the missing data and also locations of measured

values.

[46]: # remove values for two years
to_remove = lyzeJan["year"].isin([2010,2011])
lyzeJanMissing = lyzeJan.copy(deep=True)
lyzeJanMissing.loc[to_remove, 'frequency'] = np.nan
axes = sns.lineplot(lyzeJanMissing, x='year', y='frequency', hue='term')
axes.set_ylim(ymin=0)
axes.set_title("Google trends for two search terms in January,␣

↪2007-2022\n(Missing values for 2010 and 2011 not apparent)")
axes.set_ylabel("Frequency of the term, monthly average")
pass

[47]: axes = sns.pointplot(lyzeJanMissing, x='year', y='frequency', hue='term')
axes.set_ylim(ymin=0)
axes.set_title("Google trends for two search terms in January,␣

↪2007-2022\n(Missing values for 2010 and 2011 clearly shown)")
axes.set_ylabel("Frequency of the term, monthly average")

32

https://seaborn.pydata.org/generated/seaborn.lineplot.html
https://seaborn.pydata.org/generated/seaborn.pointplot.html

axes.tick_params(axis='x', labelrotation = 45)
pass

1.4.9 Summary of time series

Typical goals are to observe and study:

• overall trend (increasing / decreasing / flat; rate of change),
• seasonality (daily / weekly / yearly cycles),
• noise (general variability / outliers)

Useful techniques:

• smoothing by aggregation and sliding window
• overlapping timescales
• relative scales
• showing uncertainty and missing values

33

1 Lecture 7: More statistics
Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

1.1 Importing libraries and data
As usual, we start by importing libraries. We add scipy.stats library for working with probability
distributions. One more library will be added at the end of the lecture.

[29]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from IPython.display import Markdown

import scipy.stats

In this lecture, we will use the World bank dataset from Lecture 03b (table countries) downloaded
from WorldBank https://databank.worldbank.org/home under CC BY 4.0 license.

We will also work with an informal survey of preferences and opinions of young people done
in 2013 among students of FSEV UK and their friends. Datatset was downloaded from
https://www.kaggle.com/miroslavsabo/young-people-survey . Columns correspond to survey ques-
tions, rows to respondents. The list of questions and meaning of responses is given in this document.

[30]: url = 'https://bbrejova.github.io/viz/data/fsev-responses.csv'
fsev = pd.read_csv(url)
display(Markdown("**Size of fsev table:**"), fsev.shape)

Size of fsev table:

(1010, 150)

[31]: url = 'https://bbrejova.github.io/viz/data/World_bank.csv'
countries = pd.read_csv(url).set_index('Country')
display(countries.describe())

Population2000 Population2010 Population2020 Area \
count 2.170000e+02 2.170000e+02 2.170000e+02 2.160000e+02
mean 2.821267e+07 3.201312e+07 3.592913e+07 6.235930e+05
std 1.157060e+08 1.282292e+08 1.398323e+08 1.828856e+06
min 9.638000e+03 1.024100e+04 1.106900e+04 1.000000e+01
25% 6.049510e+05 7.055170e+05 7.972020e+05 1.122250e+04
50% 5.056174e+06 5.768613e+06 6.579900e+06 1.017050e+05
75% 1.639406e+07 2.112004e+07 2.564925e+07 4.786050e+05
max 1.262645e+09 1.337705e+09 1.411100e+09 1.709825e+07

1

http://bbrejova.github.io/viz/
https://docs.scipy.org/doc/scipy/reference/stats.html
https://bbrejova.github.io/viz/data/fsev-columns.txt

GDP2000 GDP2010 GDP2020 Expectancy2000 \
count 199.000000 209.000000 210.000000 211.000000
mean 8292.850729 16135.528397 17547.135072 67.358588
std 13036.320032 24118.156125 26171.548454 9.795515
min 122.961660 222.660583 216.827417 44.518000
25% 654.638840 1706.414917 2262.246896 61.362000
50% 1996.515578 5735.422857 6370.903532 70.417073
75% 10721.262761 21447.858255 22805.261142 74.505000
max 81763.827669 161780.745361 182537.387370 81.370000

Expectancy2010 Expectancy2020 Fertility2000 Fertility2010 \
count 210.000000 209.000000 211.000000 211.000000
mean 70.580052 72.309699 3.211021 2.890908
std 8.831970 7.482700 1.716951 1.490287
min 45.596000 52.777000 0.912000 1.042000
25% 64.480750 66.797000 1.840000 1.765000
50% 72.810500 72.889000 2.660000 2.340000
75% 77.578598 78.041000 4.395000 3.827000
max 83.109000 85.497561 7.732000 7.485000

Fertility2020
count 211.000000
mean 2.525145
std 1.273400
min 0.837000
25% 1.557500
50% 2.040000
75% 3.257000
max 6.892000

[32]: display(Markdown("**Values of life expectancy in 2020 in individual countries:
↪**"))

display(countries['Expectancy2020'].dropna())

Values of life expectancy in 2020 in individual countries:

Country
Afghanistan 62.575000
Albania 76.989000
Algeria 74.453000
Angola 62.261000
Antigua and Barbuda 78.841000

…
Virgin Islands 79.819512
West Bank and Gaza 74.403000
Yemen 64.650000
Zambia 62.380000
Zimbabwe 61.124000

2

Name: Expectancy2020, Length: 209, dtype: float64

1.2 Histograms
Histograms are well known, and we have seen them in Lecture 03. We split the range of a variable
into equally sized bins, count the number of data points in each bin and plot the counts as a bar
graph.

Histograms allow us to observe many aspects of distribution of values of a variable:

• range of values, outliers
• central tendency
• unimodality / multimodality
• variance
• symmetry / skewness (šikmosť)

[33]: axes = sns.histplot(data=countries, x='Expectancy2020')
axes.set_title('Life expectancy of world countries in 2020')
axes.set_xlabel(None)
axes.figure.set_size_inches(5, 3)
pass

1.2.1 Custom bins

• Seaborn library makes bins by splitting the range into equally sized intervals, but perhaps
a more meaningfull plot uses round values at bin boundaries, e.g. intervals of 5 years 50-55,
55-60, 60-65,…

• We can use manually created bin boundaries in Seaborn.
• Plotly library tries to create more meaningful bins by default.

[34]: # create a figure with two plots
figure, axes = plt.subplots(1, 2, figsize=(8,2.5), sharey=True)

3

the first plot has histogram with default bins of width 5
sns.histplot(data=countries, x='Expectancy2020', binwidth=5, ax=axes[0])
axes[0].set_title('Default bins')

the second plot has manually set bin boundaries 50,55,60,...,85
sns.histplot(data=countries, x='Expectancy2020',

bins=range(50, 90, 5), ax=axes[1])
axes[1].set_title('Manually created bins')
pass

[35]: # in Plotly, we specify the maximum number of bins,
library may choose a lower number to get "nice" bin boundaries
fig = px.histogram(countries, x="Expectancy2020",

nbins=8, width=500, height=350)
fig.show()

1.2.2 Use equally-sized bins

• Manually created bin boundaries can be arbitrary, but if bin width is unequal, the resulting
plot is confusing.

• If you really need special bins (e.g. age <18 years, 18-65 years, >65 years), make a categorical
variable, then plot it as a bar graph (typically displayed as bars with equal width, spaces
between bars), clearly mark the meaning of each bar.

[36]: axes = sns.histplot(data=countries, x='Expectancy2020',
bins=[50, 60, 70, 75, 80, 90])

axes.set_title('A confusing histogram with different bin sizes')
axes.figure.set_size_inches(5, 3)
pass

4

1.2.3 Removing outliers

• Histograms are great for spotting outliers.
• But extreme values reduce the space given to more regular values, so perhaps we want to

remove them in subsequent analysis.

We have several options:

• Remove them from the dataset if we believe them to be errors.
• Or remove them from the plot only, e.g. by set_xlim or by using custom bins with a smaller

range.
• Or clip values: replace values above some threshold with the threshold value (function clip

in Pandas). Thus they will be present in the last bin. This bin should be then clearly marked.

[37]: axes = sns.histplot(data=countries, x='GDP2020')
axes.set_title('Some countries have a very high GDP')
axes.figure.set_size_inches(5, 3)
pass

5

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.clip.html

[38]: # replace values larger than 51k with 51k
gdp_clipped = countries['GDP2020'].clip(0, 51000)
make histogram with manual bins, with last bin 50k-52k
axes = sns.histplot(x=gdp_clipped, bins=np.arange(0, 53000, 2000))
axes.figure.set_size_inches(5, 3)
mention clipping in plot title
axes.set_title('All GDP values >=50k grouped to the last bin')
also add a text label to the bin with clipped values
axes.text(x=50000, y=25, s='>=50000')
pass

6

1.2.4 Problems with precision

When working with integers or even real numbers given with a small number of decimal points, we
can get artifacts related to different number of possible values falling to different bins.

To illustrate this, we uniformly sample million points from the set {0, 0.01, 0.02, … , 0.99}.
• There will be a similar number of samples for each possible value from this set.
• We show histograms with 10, 7 and 77 equally sized bins.
• For 10 bins, each bin summarizes 10 of the possible values and the sizes are approximately

the same.
• For 7 bins, the first and the last bin summarize 15 possible values each and remaining bins

summarize 14 possible values each. The first and last bin are thus slightly higher.
• For 77 bins, some bins summarize 2 different values, others only 1. We see clear differences

in bar height.

If we are unaware of this, we may draw incorrect conclusions from the second and third plot.

[39]: sample_uniform = np.random.randint(0, 100, 1000000) / 100
display(Markdown('**Example of data (first values):**'), sample_uniform[0:5])
figure, axes = plt.subplots(1, 3, figsize=(10,2.5))
figure.tight_layout(pad=3)
for (i, bin) in enumerate([10, 7, 77]):

sns.histplot(x=sample_uniform, bins=bin, ax=axes[i])
axes[i].set_xlabel(f"{bin} bins")

figure.suptitle("Uniform random numbers from [0,1) with 2 decimal digits")
pass

Example of data (first values):

array([0.44, 0.65, 0.72, 0.14, 0.46])

1.2.5 Small samples

Beware drawing strong conclusions from small samples.

• Below we again first show the histogram of life expectancy over all countries.
• Then we show histograms of four random subsets of 20 countries each.
• Any estimates (including histograms) from small samples are subject to random noise.

[40]: axes = sns.histplot(data=countries, x='Expectancy2020')
axes.set_title('All countries')
axes.figure.set_size_inches(5, 3)

7

pass

[41]: figure, axes = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(7,4))
for row in axes:

for subplot in row:
expectancy_sample = countries['Expectancy2020'].dropna().sample(20)
sns.histplot(x=expectancy_sample, ax=subplot)

figure.suptitle("Different random subsets of 20 countries")
pass

8

1.2.6 Summary: Histogram bin size

To summarize, the tricky part of using histograms is to choose the bin size or the number of bins.

Smaller bins mean more details are visible, but some of those details may be artefacts:

• random fluctuations due to small number of points in the bin, or
• effects related to insufficient resolution of the data.

Thus choose bin size based on:

• the amount of data,
• the precision of input values,
• the meaningful resulution of the results.

In the example below we show the life expectancy data with different number of bins. Do 50 or
500 bins show more meaningful information than 10 bins?

[42]: # one set of plots has share y axis, one has not
figure1, axes1 = plt.subplots(1, 3, figsize=(10,2), sharey=True)
figure2, axes2 = plt.subplots(1, 3, figsize=(10,2))
plot the same plots for each set
for (figure, axes, title) in [(figure1, axes1, 'shared y axis'),

(figure2, axes2, 'different y axes')]:
iterate over different numbers of bins
for (i, bin) in enumerate([10, 50, 500]):
sns.histplot(data=countries, x='Expectancy2020', bins=bin, ax=axes[i])
axes[i].set_xlabel(f"{bin} bins")

title of the whole figure
figure.suptitle(f"Life expectancy in 2020, {title}")
figure.subplots_adjust(wspace=0.3)

pass

9

1.2.7 Comparing distributions with histograms

• We can compare distributions of a numerical variable split into groups by a categorical vari-
able.

• For example in our countries table, we can compare life expectancy in different regions of
the world.

• Seaborn provides several options for doing so.

The first two plots use semi-transparent overlapping histograms, which work well for two regions
(left), but are a mess for many regions (right).

[43]: # select two regions
countries_subset = countries.query('Region == "Europe & Central Asia" '

+ 'or Region == "Sub-Saharan Africa"')
create figure with 2 plots
figures, axes = plt.subplots(1, 2, figsize=(10,4), sharey=True)
plot both histograms
sns.histplot(data=countries_subset, x='Expectancy2020', hue='Region', ax =␣

↪axes[0])
sns.histplot(data=countries, x='Expectancy2020', hue='Region', ax=axes[1])
make bigger y-axis to accomodate legend
axes[0].set_ylim(0,40)
titles
axes[0].set_title('Overlapping histograms for two regions')
axes[1].set_title('Overlapping histograms for all regions')
pass

The next two plots attempt to improve the situation.

• On the left we omit bar outlines to simplify the plot.
• On the right we use stacked bars, showing contribution of each region to the whole.

[44]: # create figure with 2 plots
figures, axes = plt.subplots(1, 2, figsize=(10, 5))
plot both histograms
sns.histplot(data=countries, x='Expectancy2020', hue='Region',

10

https://seaborn.pydata.org/tutorial/distributions.html

element='step', ax = axes[0])
sns.histplot(data=countries, x='Expectancy2020', hue='Region', element='step',

multiple="stack", ax=axes[1])
make bigger y-axis to accomodate legend
axes[0].set_ylim(0,35)
axes[1].set_ylim(0,80)
titles
axes[0].set_title('Omitting bar frames')
axes[1].set_title('Stacked bars')
pass

• Regions contain different number of countries.
• To better compare distribution of the expectancy within region, we should normalize the

count to probabilities.
• Use common_norm=False to normalize each region separately.

[45]: display(Markdown("**Countries in regions:**"))
display(countries.groupby('Region').size().sort_values())

select two regions of very different sizes
countries_subset2 = countries.query('Region == "Europe & Central Asia" '

+ 'or Region == "Middle East & North␣
↪Africa"')

plot counts and probabilities
figure, axes = plt.subplots(1, 2, figsize=(9,3))
sns.histplot(data=countries_subset2, x='Expectancy2020', hue='Region',␣

↪element='step', ax=axes[0])
sns.histplot(data=countries_subset2, x='Expectancy2020', hue='Region',␣

↪element='step',
stat="probability", common_norm=False, ax=axes[1])

axes[0].set_title('Counts')
axes[1].set_title('Probabilities within region')

11

pass

Countries in regions:

Region
North America 3
South Asia 8
Middle East & North Africa 21
East Asia & Pacific 37
Latin America & Caribbean 42
Sub-Saharan Africa 48
Europe & Central Asia 58
dtype: int64

• Using FSEV survey, we can compare self-reported heights of women and men.
• We will use only values of adults above 18 years of age.
• Besides the expected trend, we also see a clear outlier, perhaps an error (although people of

such heights exist, the cases are extremely rare).
• We will replace it with NaN.

[46]: fsev.iloc[:,144].value_counts()
adults = fsev.query("Age >= 18").copy(deep=True)
axes = sns.histplot(data=adults, x='Height', hue='Gender',

hue_order=['female', 'male'], palette=['C3', 'C0'],
stat="probability", common_norm=False)

axes.figure.set_size_inches(5, 3)
pass

12

Below we see histograms after removal of the extreme value.

[47]: # replace all values lower than 100cm by NaN, in a new column HeighFixed
adults['HeightFixed']=adults['Height'].mask(adults['Height']<100, np.nan)
figure, axes = plt.subplots(1, 3, figsize=(9,4))
sns.histplot(data = adults, x='HeightFixed', hue='Gender',

hue_order=['female', 'male'], palette=['C3', 'C0'],
stat="probability", common_norm=False, ax=axes[0])

sns.histplot(data = adults, x='HeightFixed', hue='Gender',
hue_order=['female', 'male'], palette=['C3', 'C0'],
ax=axes[1])

sns.histplot(data = adults, x='HeightFixed', ax=axes[2])
axes[0].set_ylim(0,0.25)
axes[1].set_ylim(0,140)
axes[2].set_ylim(0,140)
axes[0].set_title('Probabilities')
axes[1].set_title('Counts')
axes[2].set_title('Counts combined')
pass

13

1.3 Probability distributions
• For a continuous variable, we can imagine having infinitely many data points and making

histogram with infinitely small bins, keeping the area under the histogram equal to one.
• Thus we obtain probability density function (PDF) (hustota rozdelenia pravdepodob-

nosti).
• We often assume that our data are a small sample from one of the well-characterized proba-

bility distributions (rozdelenie pravdepodobnosti).

1.3.1 Normal (Gaussian) distribution

• The normal (or Gaussian) distribution has two parameters: mean 𝜇 and standard deviation
𝜎.

• Its density is 𝑓(𝑥) = 1
𝜎

√
2𝜋𝑒− 1

2 (𝑥−𝜇
𝜎)2

.
• This is the well-known bell shape.
• Below we plot both histogram of a million samples from this distribution and the density

given by the function above.
• These two plots are very similar.

[48]: figure, axes = plt.subplots(1, 2, sharex=True, figsize=(8, 3.5))

sample million points from the normal distrib. with mean 0 and std. dev. 3
sample_normal = np.random.normal(0, 3, 1000000)
create histogram of the sampled points
sns.histplot(x=sample_normal, bins=200, ax=axes[0])
axes[0].set_title('Histogram of 1M samples, 200 bins')

create an object representing normal distrib. with mean 0 and std. dev. 3
normal = scipy.stats.norm(0, 3)
create equally-spaced points
x = np.arange(-12, 12, 0.1)
compute values of pdf in these points
y = normal.pdf(x)
plot the function
axes[1].plot(x, y, 'k-')
axes[1].set_title('Probability density function')
axes[1].set_ylim(0, 0.14)

figure.suptitle("Normal distribution with mean 0, standard dev. 3")
pass

14

• Normal distribution often arises in situations where a variable is a result of many small
influences.

• One example is the height of a person within one gender and population.
• Below we fit the normal distribution to the histogram of the adult male heights from the

FSEV survey.

[49]: # select male height, drop missing values
male_heights = adults.query("Gender=='male'")['Height'].dropna()
compute the characteristics (means, stdev)
display(Markdown("**Mean male height:**"),

male_heights.mean(),
Markdown("**Std. dev. male height:**"),
male_heights.std())

compute the best fit
parameters = scipy.stats.norm.fit(male_heights)
display(Markdown("**Best fit:**"), parameters)

get function values for regularly distributed x values
x = np.arange(150, 200, 1)
pdf_fitted = scipy.stats.norm.pdf(x, loc=parameters[0], scale=parameters[1])

plot histogram, normalized as density (area=1)
figure, axes = plt.subplots(figsize=(5,3))
sns.histplot(x=male_heights, stat='density', ax=axes)
add a line for fitted density
axes.plot(x, pdf_fitted, 'k-')
axes.set_title('Male heights with normal distribution fit')
pass

Mean male height:

181.91820580474933

Std. dev. male height:

15

6.957251247475206

Best fit:

(181.91820580474933, 6.948066753375318)

1.4 Kernel Density Estimation (KDE)
• KDE creates a smoothed version of a histogram.
• We choose a kernel function. e.g. the normal distribution.
• For each point in the dataset, the method creates a “kernel” centered at that point.
• It then adds up the heights of all kernel copies.
• The amount of smoothing is controled by the bandwidth parameter (standard deviation for

the normal distribution).
• More information is in the scikit-learn documentation.

https://commons.wikimedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png Drleft
at English Wikipedia, CC BY-SA 3.0

• KDE can be conveniently computed directly in Seaborn’s displot/kdeplot function.
• The bandwidth is adjusted by bw_adjust, with default 1.
• A small bandwidth leads to a bumpy plot not representing real trends.
• A large badwidth can obscure real trends.

[50]: figure, axes = plt.subplots(1, 3, sharex=True, sharey=True, figsize=(9,2.5))
for axes, bandwidth in [(axes[0], 0.25), (axes[1], 1), (axes[2], 4)]:
sns.kdeplot(x=countries["Expectancy2020"], ax=axes, bw_adjust=bandwidth)
axes.set_title(f'Bandwidth {bandwidth}')
axes.set_xlim(40,100)

pass

16

https://scikit-learn.org/stable/modules/density.html
https://seaborn.pydata.org/tutorial/distributions.html

We can display combined histogram and KDE.

[51]: axes = sns.displot(countries, x="Expectancy2020", kde=True)
axes.figure.set_size_inches(5, 3)
pass

KDE plots can be also better for comparing multiple distributions, as their smooth curves are easier
to follow than histograms.

[52]: figure, axes = plt.subplots(1, 2, sharex=True, figsize=(9,5))
sns.kdeplot(x=countries["Expectancy2020"], hue=countries["Region"], ax=axes[0])
axes[0].set_ylim(0, 0.05)
axes[0].set_title('Common normalization')
sns.kdeplot(x=countries["Expectancy2020"], hue=countries["Region"],

common_norm=False, ax=axes[1])
axes[1].set_title('Separate normalization')
axes[1].set_ylim(0, 0.35)
pass

17

1.5 Violin plots
• Violin plots are often used instead of boxplots to compare distributions for different values of

a categorical variable.
• Each violin consist of two symmetric KDE plots.
• They can be accompanied by a boxplot or strip plot.
• More variants can be found in the Seaborn tutorial.

[53]: sns.violinplot(data=countries, y="Region", x="Expectancy2020", color="C1")
pass

1.6 Cumulative distribution function
For a probability density function 𝑓(𝑥):

• Its cumulative distribution function (CDF) (distribučná funkcia) is the area under the curve
from left up to point 𝑥.

18

https://seaborn.pydata.org/generated/seaborn.violinplot.html
https://seaborn.pydata.org/tutorial/categorical.html

• 𝐹(𝑥) = ∫𝑥
−∞ 𝑓(𝑡) 𝑑𝑡.

• CDF is non-decreasing.
• lim𝑥→−∞ 𝐹(𝑥) = 0 and lim𝑥→∞ 𝐹(𝑥) = 1.
• 𝐹(𝑥) is the probability that the random point from the distribution is ≤ 𝑥.

https://commons.wikimedia.org/wiki/File:Normal_Distribution_CDF.svg Inductiveload, Public
domain

1.6.1 Empirical cumulative distribution function (ECDF)

• This is a similar concept for a finite sample.
• For each 𝑥, 𝐹(𝑥) is the fraction of the sample which is ≤ 𝑥.
• This gives us a step-wise function which can be visualized.
• Unlike histograms and KDE, no parameters need to be set (bins, bandwidth).
• Allows comparison of multiple distributions and their quantiles (how?).
• But harder to interpret than histogram in terms of shape.

[54]: grid = sns.displot(adults, x="HeightFixed", hue="Gender", kind="ecdf",
hue_order=['female', 'male'], palette=['C3', 'C0'])

grid.axes[0,0].set_title('ECDF for female and male heights')
grid = sns.displot(countries, x="Expectancy2020", hue="Region", kind="ecdf")
grid.axes[0,0].set_title('ECDF for expectancy in different regions')
grid.figure.set_size_inches(5, 3)
pass

19

1.7 Two-dimensional histograms / KDE
• Instead of scatterplots, we can compute 2D histograms or smooth them by KDE.
• This works well if we have many overlapping points.
• Below we show several variants for the plot height vs. weight of adults in the FSEV survey

(with the height outlier removed).
• In scatterplot there is a cloud of overlapping points and it is not clear which parts of it are

denser. This can be somewhat improved with smaller points and transparency.

[55]: axes = sns.scatterplot(data=adults, x='HeightFixed', y='Weight')
axes.figure.set_size_inches(5, 3)
axes.set_title('Scatterplot of height vs weight')
pass

20

[56]: # plot with smaller points (s=4) and transparency (alpha=0.6)
axes = sns.scatterplot(data=adults, x='HeightFixed', y='Weight', s=4, alpha=0.6)
axes.figure.set_size_inches(5, 3)
axes.set_title('Scatterplot of height vs weight with transparency')
pass

[57]: grid = sns.displot(data=adults, x='HeightFixed', y='Weight')
grid.figure.set_size_inches(4, 3)
grid.ax.set_title('Heatmap (2D histogram) of height vs weight')
pass

21

[58]: grid = sns.displot(data=adults, x='HeightFixed', y='Weight', kind="kde")
grid.figure.set_size_inches(4, 3)
grid.ax.set_title('2D KDE of height vs weight: isolines')
pass

[59]: grid = sns.displot(data=adults, x='HeightFixed', y='Weight', kind="kde",␣
↪fill=True)

grid.figure.set_size_inches(4, 3)
grid.ax.set_title('2D KDE of height vs weight: color scale')
pass

22

1.8 Clustering multi-dimensional data
• The FSEV survey contains questions about phobias and fears, each with answers 1-5 (5 means

highest fear).
• We will first randomly select 200 participants without missing values.
• We will display them as a heatmap.

[60]: # columns 63-72 are fears, drop rows with missing values, sample 200 people
fsev_sample = fsev.iloc[:, 63:73].dropna().sample(200)
show sample of the data
display(fsev_sample.head())

Flying Storm Darkness Heights Spiders Snakes Rats Ageing \
995 3.0 2.0 1.0 1.0 1.0 2 1.0 1.0
27 3.0 5.0 2.0 2.0 5.0 5 1.0 4.0
978 3.0 1.0 4.0 3.0 4.0 4 3.0 4.0
568 2.0 5.0 3.0 3.0 3.0 5 4.0 4.0
206 3.0 2.0 1.0 2.0 3.0 3 3.0 2.0

Dangerous dogs Fear of public speaking
995 2.0 2.0
27 1.0 2.0
978 2.0 3.0
568 5.0 3.0
206 2.0 1.0

23

[61]: figure, axes = plt.subplots(figsize=(10,6))
sns.heatmap(fsev_sample.transpose(), xticklabels=False, ax=axes, cmap="YlOrBr")
pass

• Heatmap does not show clear trends, but we see that some phobias have higher values than
others.

• We display this more explicitly by sorted means.
• Then we “standardize” values for individual phobias by subtracting the mean and dividing

by the standard deviation.
• After this change, each phobia has mean 0 and standard deviation 1.
• People with positive scores fear that subject more than average, with negative scores less than

average.

[62]: display(Markdown("**Phobias sorted by mean score in the survey:**"))
display(fsev_sample.mean().sort_values())

Phobias sorted by mean score in the survey:

Storm 1.970
Flying 2.180
Darkness 2.310
Rats 2.475
Ageing 2.575
Heights 2.740
Fear of public speaking 2.815
Dangerous dogs 2.920
Spiders 2.975
Snakes 3.015
dtype: float64

[63]: fsev_sample_standardized = (fsev_sample - fsev_sample.mean()) / fsev_sample.
↪std()

display(fsev_sample_standardized.head())

24

Flying Storm Darkness Heights Spiders Snakes Rats \
995 0.694374 0.026563 -1.019166 -1.411326 -1.281210 -0.675758 -1.022784
27 0.694374 2.682911 -0.241177 -0.600219 1.313646 1.321556 -1.022784
978 0.694374 -0.858886 1.314803 0.210888 0.664932 0.655785 0.364042
568 -0.152423 2.682911 0.536813 0.210888 0.016218 1.321556 1.057455
206 0.694374 0.026563 -1.019166 -0.600219 0.016218 -0.009987 0.364042

Ageing Dangerous dogs Fear of public speaking
995 -1.147529 -0.709371 -0.686886
27 1.038241 -1.480427 -0.686886
978 1.038241 -0.709371 0.155919
568 1.038241 1.603796 0.155919
206 -0.418939 -0.709371 -1.529692

[64]: figure,axes = plt.subplots(figsize=(10,6))
sns.heatmap(fsev_sample_standardized.transpose(), xticklabels=False,␣

↪cmap="YlOrBr")
pass

• Heatmap now does not show much.
• Bellow we reorder its rows and columns by clustering (zhlukovanie), which puts similar rows

and similar columns together.
• The degree of similarity is reflected also in the trees (recall last lecture about hierarchies).
• Some areas of dark and light colors now appear.

[65]: sns.clustermap(fsev_sample_standardized.transpose(),
xticklabels=False, figsize=(10,6), cmap="YlOrBr")

pass

25

https://seaborn.pydata.org/generated/seaborn.clustermap.html

1.9 Dimensionality reduction
Methods for dimensionality reduction project high-dimensional data into lower-dimensional (usually
2D) space, while trying to preserve some structure in the original data.

• Principal component analysis (PCA) uses a linear projection: each new dimension is a
linear combination (weighted sum) of the original dimensions. Weights are chosen to maximize
variance.

Some methods do not use linear projections, but try to preserve distances between points, for
example: * Multidimensional scaling (MDS), * T-distributed Stochastic Neighbor Embedding (t-
SNE).

We will use PCA from the scikit-learn library for machine learning in Python.

[66]: from sklearn.decomposition import PCA
compute PCA of our standardized data with 2 dimensions
fsev_pca = PCA(n_components=2).fit_transform(fsev_sample_standardized)
display(Markdown("**PCA transformed values** (first five lines):"))
display(fsev_pca[0:5, :])
axes = sns.scatterplot(x=fsev_pca[:, 0], y=fsev_pca[:, 1])

PCA transformed values (first five lines):

array([[-2.40005395, 0.13763973],
[0.79985413, -0.09193566],
[1.09446725, -0.01171503],
[2.83751212, 0.19095389],
[-0.90658354, -0.90915457]])

26

https://scikit-learn.org/stable/modules/decomposition.html
https://scikit-learn.org/stable/modules/manifold.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/index.html

The scatterplot starts to be interesting if we can color points by some known factors.

• Below we see that men and women are quite mixed but women are shifted to the left.
• It seems that the first dimension strongly correlates with the overall fearfuless of a person.
• Fears of snakes and storms are strongly related to the overall fearfulness, but they also have

trends along the y-axis.

[67]: # all columns for our sample to select gender and all data
fsev_sample_all = fsev.loc[fsev_sample.index,]
figure, axes = plt.subplots(2, 2, figsize=(10,10))
sns.scatterplot(x=fsev_pca[:, 0], y=fsev_pca[:, 1],

hue=fsev_sample_all['Gender'],
hue_order=['female', 'male'], palette=['C3', 'C0'],
ax=axes[0,0])

axes[0,0].set_title('PCA colored by gender')
sns.scatterplot(x=fsev_pca[:, 0], y=fsev_pca[:, 1],

hue=fsev_sample_standardized.sum(axis=1), ax=axes[0,1])
axes[0,1].set_title('PCA colored by sum of fears')
sns.scatterplot(x=fsev_pca[:, 0], y=fsev_pca[:, 1],

hue=fsev_sample_all['Snakes'], ax=axes[1,0])
axes[1,0].set_title('PCA colored by fear of snakes')
sns.scatterplot(x=fsev_pca[:, 0], y=fsev_pca[:, 1],

hue=fsev_sample_all['Storm'], ax=axes[1,1])
axes[1,1].set_title('PCA colored by fear of storm')
pass

27

1.10 Conclusion and other courses
We briefly covered several statistical concepts often used in visualization:

• histogram,
• kernel density estimation,
• empirical cumulative distribution function,
• clustering,
• dimensionality reduction.

You will learn more in the next years of your study:

• Fundamentals of Probability and Statistics, 2W (DAV) or 3W (BIN)
• Principles of Data Science 3W (DAV)
• Linear Algebra this semester

28

https://sluzby.fmph.uniba.sk/infolist/sk/1-DAV-201_20.html
https://sluzby.fmph.uniba.sk/infolist/sk/1-DAV-302_20.html
https://sluzby.fmph.uniba.sk/infolist/sk/1-DAV-104_20.html

Lecture 8
Visual perception and colors

Data visualization · 1-DAV-105
Lecture by Broňa Brejová

Acknowledgement: materials inspired by lectures from Martina Bátorová in 2021

https://bbrejova.github.io/viz/

Aside: data analysis / visualization project phases
● Obtaining data
● Data preprocessing, checking, cleaning
● Exploratory analysis (many tables and graphs for your use)
● Formation of hypotheses
● Testing hypotheses (careful reanalysis, new data, other sources)
● Explanatory visualizations for the final report / presentation (best views

selected for the audience)

More in two weeks

Why talk about visual perception
in visualization?

In which period of time was life expectancy higher in
Slovakia than in Portugal?

In which period of time was life expectancy higher in
Slovakia than in Portugal?

Visual brain, table vs. graph
We "read" tables, verbal processing

We "see" plots, visual processing

Visual processing is very parallel and fast, evolved to spot predators

In which situations is a table preferable to a plot?

Human visual perception
What happens when we look at the figure below?

Human visual perception

Human visual perception
What happens when we look at the figure?

● The light from the screen / projector hits the retinas of our eyes
● Photoreceptor cells transduce (convert) this signal into nerve impulses
● In the brain:

○ detection of basic features
○ recognition of patterns
○ interpretation, assignment of meaning

Today: Focus on the light, eyes and colors, later stages next week

Light

Visible light as a part of electromagnetic spectrum

visible wavelengths cca
400–700 nanometres

https://commons.wikimedia.org/wiki/File:EM_spectrum.svg

https://commons.wikimedia.org/wiki/File:EM_spectrum.svg

Sunlight is a mixture of different wavelengths

https://commons.wikimedia.org/wiki/File:Solar_spectrum_en.svg
https://commons.wikimedia.org/wiki/File:WhereRainbowRises.jpg

https://commons.wikimedia.org/wiki/File:Solar_spectrum_en.svg
https://commons.wikimedia.org/wiki/File:WhereRainbowRises.jpg

Human eye

Human eye
Retina (sietnica): light-sensitive
layer

Lens (šošovka): focus light to retina

Pupil (zrenica): hole in iris
(dúhovka) where light enters the
eye, its size regulated by the
amount of light

https://commons.wikimedia.org/wiki/File:Three_Main_Layers_of_the_Eye.png

https://commons.wikimedia.org/wiki/File:Three_Main_Layers_of_the_Eye.png

Photoreceptor cells in the retina
Rods (tyčinky): more sensitive to low light, not
used for color vision

Cones (čapíky): color vision, three different
types sensitive to different wavelengths (blue,
green, red)

https://commons.wikimedia.org/wiki/File:Cones_SMJ2_E.svg

https://commons.wikimedia.org/wiki/File:Cones_SMJ2_E.svg

Foveal vs peripheral vision
Fovea: central zone with many
cones, sharp color vision, only
about 1-2°

Peripheral vision: mostly rods,
fast monochrome vision

The eyes make fast
movements (saccades)
between fixations on different
points of interest to create a
composite image

https://commons.wikimedia.org/wiki/File:Double_system_e.jpg

https://commons.wikimedia.org/wiki/File:Double_system_e.jpg

Colors and color spaces

Metamers: light with different spectra
that appear the same (to typical humans)

https://jamie-wong.com/post/color/

https://jamie-wong.com/post/color/

Color spaces, LMS
A color space is an organization of colors.

Our eye projects a full light spectrum into three
values: response of the three types of cones.

S (short), M (medium), L (large) wavelength

LMS color space uses these three values to
represent a color.

Metameric colors have the same values.

Derived models, e.g. CIE with better properties.
https://commons.wikimedia.org/wiki/File:Solar_spectrum_en.svg
https://commons.wikimedia.org/wiki/File:Cones_SMJ2_E.svg

https://commons.wikimedia.org/wiki/File:Solar_spectrum_en.svg
https://commons.wikimedia.org/wiki/File:Cones_SMJ2_E.svg

Do you know some other color spaces?

Additive color models, RGB
Monitors, projectors etc.

Component lights in primary colors,
other colors mixtures of these (adding up light).

White can be achieved by combining colors.

RGB uses red, green, blue as primary
(corresponds to LMS peaks).

The gamut is the set of colors representable by a
device, usually a subset of the visible spectrum.

https://commons.wikimedia.org/wiki/File:RGB_illumination.jpg
https://commons.wikimedia.org/wiki/File:Nexus_one_screen_microscope.jpg

https://commons.wikimedia.org/wiki/File:RGB_illumination.jpg
https://commons.wikimedia.org/wiki/File:Nexus_one_screen_microscope.jpg

Colors in RGB space (RGB cube)
RGB is often used to specify colors.
Each coordinate e.g. a real number between 0 and 1
or integer between 0 and 255.
Also hexadecimal notation, e.g. #ff0000 is pure red.

Greytones on the main diagonal (x,x,x).

https://commons.wikimedia.org/wiki/File:RGB_color_solid_cube.png
https://commons.wikimedia.org/wiki/File:RGB_Cube_Show_lowgamma_cutout_
b.png

https://commons.wikimedia.org/wiki/File:RGB_color_solid_cube.png
https://commons.wikimedia.org/wiki/File:RGB_Cube_Show_lowgamma_cutout_b.png
https://commons.wikimedia.org/wiki/File:RGB_Cube_Show_lowgamma_cutout_b.png

HSL and HSV color models
Transformations of RGB model with more intuitive coordinates.

Useful for color pickers, color palettes, image transformations etc.

Hue, saturation, lightness / hue, saturation, value.

https://commons.wikimedia.org/wiki/File:HSL_color_solid_cylinder_saturation_gray.png
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder_saturation_gray.png

https://commons.wikimedia.org/wiki/File:HSL_color_solid_cylinder_saturation_gray.png
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder_saturation_gray.png

Subtractive models, pigments
Pigments block part of the light spectrum.

Adding more pigments blocks (subtracts)
more light.

Black can be achieved by combining colors.

Example: CMY(K) color model used in printing.

https://commons.wikimedia.org/wiki/File:SubtractiveColor.svg

https://commons.wikimedia.org/wiki/File:SubtractiveColor.svg

CMY(K) color model
Primary colors cyan, magenta and yellow
- cyan absorbs red
- magenta absorbs green
- yellow absorbs blue
Black (K) added because
- it is cheaper
- it hides artifacts in dark colors

Conversion from RGB to CMYK is difficult,
device-dependent.

https://commons.wikimedia.org/wiki/File:Barns_grand_tetons.jpg
https://commons.wikimedia.org/wiki/File:CMY_separation_%E2%80%93_no_black.jpg
https://commons.wikimedia.org/wiki/File:CMYK_separation_%E2%80%93_maximum_black.jpg

https://commons.wikimedia.org/wiki/File:Barns_grand_tetons.jpg
https://commons.wikimedia.org/wiki/File:CMY_separation_%E2%80%93_no_black.jpg
https://commons.wikimedia.org/wiki/File:CMYK_separation_%E2%80%93_maximum_black.jpg

Color wheel, RYB model
Subtractive model developed in art,
for mixing pigments

Dates back to 17th century

Primary colors red, yellow, blue

Secondary orange, green, purple
(each a mix of two primaries)

https://www.w3schools.com/colors/colors_wheels.asp

https://www.w3schools.com/colors/colors_wheels.asp

Tint, tone, shade - more painter terminology

https://commons.wikimedia.org/wiki/File:Tint-tone-shade.svg

https://commons.wikimedia.org/wiki/File:Tint-tone-shade.svg

Examples of color schemes
Monochromatic: tints / tones / shades of the same hue

Complementary: 2 colors opposite on the color wheel
(e.g. orange and blue)

Split complementary: color and 2 neighbors
of its complement (e.g. orange and blue-green, blue-purple)

Analogous: 3-5 adjacent colors on the wheel

Each of these can be desaturated (tints / tones / shades)

See also https://color.adobe.com/create/color-wheel

https://www.w3schools.com/colors/colors_wheels.asp

https://color.adobe.com/create/color-wheel
https://www.w3schools.com/colors/colors_wheels.asp

Color and meaning, cultural differences
Colors often symbolize different things both within and between cultures:

● for example red: blood, love, passion, life, anger, violence, danger,
emergency, speed, heat ...
○ China: good luck, prosperity vs. Europe: warning
○ "in the red" mean losses in English, what about China?

● mourning color is black in Europe, white in the East

Colors in data visualization

Not everybody will be able to see your colors
Color blindness or color vision deficiency

Various forms and causes

Most often genetic red–green color blindness,
where L or M opsin gene is mutated (8% of males)

Technical problems
- Projectors often distort colors
- Black-and-white printing

Choose your colors wisely to avoid these problems as much as possible

https://commons.wikimedia.org/wiki/Fil
e:Ishihara_9.svg

https://commons.wikimedia.org/wiki/File:Ishihara_9.svg
https://commons.wikimedia.org/wiki/File:Ishihara_9.svg

Color draws attention, use it sparingly
Rely on neutral tones
Use color sparingly, avoid unnecessary colors
Colors are great for highlighting points of interest

Qualitative palettes (for categorical variables)
Typically vary hues, easier to distinguish than lightness of the same hue

Try to keep the number of colors low

https://seaborn.pydata.org/tutorial/color_palettes.html

https://seaborn.pydata.org/tutorial/color_palettes.html

Qualitative palettes (for categorical variables)
Examples from Seaborn library

on the right:

Color Brewer tool:

https://seaborn.pydata.org/tutorial/color_palettes.
html

https://colorbrewer2.org/
https://seaborn.pydata.org/tutorial/color_palettes.html
https://seaborn.pydata.org/tutorial/color_palettes.html

Quantitative sequential palettes
(for numerical variables)

Vary lightness rather than (just) hue (hue is circular, hard to interpret)

Discrete vs continuous:

https://seaborn.pydata.org/tutorial/color_palettes.html

https://seaborn.pydata.org/tutorial/color_palettes.html

Quantitative diverging palettes
For numerical variables with a special midpoint, often 0
(such as increase / decrease)

Midpoint displayed as a special neutral color, e.g. grey

https://seaborn.pydata.org/tutorial/color_palettes.html

https://seaborn.pydata.org/tutorial/color_palettes.html

Summary
Visual perception:

● light on the retina, transduction on photoreceptor cells
● feature detection, pattern formation, interpretation

Light and color:

● Visible light as a part of electromagnetic spectrum
● Three types of cones sensitive to different wavelengths of light

Color spaces (LMS, RGB, HSL, HSV, CMYK, RYB)

Colors in visualization (qualitative and quantitative palettes, color blindness,
sparing use of colors)

Graphics file formats (for exporting graphs)
Raster formats: store your plot as pixels at some resolution
- resolution leads to tradeoff between size and quality
- prefer lossless compression (PNG rather than JPEG)
- transparent background may be also a good idea

Vector formats: store your plot as geometric objects (SVG, PDF, EPS)
- can be arbitrarily enlarged, editable
- can be large if many points / lines (subsample data?)
- vector formats usually preferable unless not supported by software
- it is a good idea to include fonts in the file
- beware that these file formats may include bitmaps

Lecture 9
 Pre-attentive attributes,

gestalt, illusions
Data visualization · 1-DAV-105

Lecture by Broňa Brejová

Acknowledgement: materials inspired by lectures from Martina Bátorová in 2021

https://bbrejova.github.io/viz/

Human visual perception
What happens when we look at the figure?

● The light from the screen / projector hits the retinas of our eyes
● Photoreceptor cells transduce (convert) this signal into nerve impulses
● In the brain:

○ detection of basic features
○ recognition of patterns
○ interpretation, assignment of meaning

What happens when we look at the figure?

● The light from the screen / projector hits the retinas of our eyes
● Photoreceptor cells transduce (convert) this signal into nerve impulses
● In the brain:

○ detection of basic features
○ recognition of patterns
○ interpretation, assignment of meaning

Today: Detection of features and patterns, use for visualization

Note: Human visual perception is very good for detecting motion (danger/prey).
This is relevant for animated visualization, but not covered today.

Human visual perception

In which period of time was life expectancy higher in
Slovakia than in Portugal?

In which period of time was life expectancy higher in
Slovakia than in Portugal?

How many copies of digit six do you see?

1014508
2530653
6821550
3702967
8622988

What about now?

1014508
2530653
6821550
3702967
8622988

What about Slovakia vs Portugal in this table?

Pre-attentive attributes
● Features of the seen objects detected by our brain very fast
● Prior to and without the need of conscious awareness
● Brain uses them to guide attention / gaze to interesting parts of the scene
● Their correct use allows fast and effortless understanding of our visualizations

Next:
Examples of important pre-attentive attributes (form, color, position)
following Few 2009

See also https://www.csc2.ncsu.edu/faculty/healey/PP/

https://www.csc2.ncsu.edu/faculty/healey/PP/

Pre-attentive attributes: form
We can quickly distinguish one object that differs from the rest

Pre-attentive attributes: form
We can quickly distinguish one object that differs from the rest

Pre-attentive attributes: color
We can quickly distinguish one object that differs from the rest

Pre-attentive attributes: position

Hierarchy of graph elements
Cleveland, McGill 1985

Experiments with volunteers of how well they judge ratios between values
graphically encoded in different ways.

Not all pre-attentive attributes are equally good for quantitative reasoning.

https://courses.ischool.berkeley.edu/i247/f05/readings/Cleveland_GraphicalPerception_Science85.pdf

Prefer elements on the left side for accuracy

Based on https://paldhous.github.io/ucb/2015/dataviz/week2.htm

https://paldhous.github.io/ucb/2015/dataviz/week2.htm

The same data with length / area / color / angle

10,20,17

Chart selection tools
In lecture 3 and later, we have seen many types of graphs

Some websites list them based on variable type and purpose for easier selection:

● https://www.data-to-viz.com/
● https://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html

Let us look at some the suggestions from the first website in terms of the hierarchy
of graph elements

https://www.data-to-viz.com/
https://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html

From parts to the whole: gestalt
● Gestalt psychology (early 20th century, Austria and Germany)
● Gestalt means pattern
● Our brains group individual shapes into larger patterns
● The brain favors speed to precision (illusions, errors)
● It also favors symmetry and simplicity
● Several gestalt principles are relevant in data visualization

https://commons.wikimedia.org/wiki/File:Reification.svg

Principle of proximity
● Objects located close to each other are perceived as a group
● Good use of space in plots / tables / presentations can improve readability

https://commons.wikimedia.org/wiki/File:Gestalt_proximity.svg

https://commons.wikimedia.org/wiki/File:Gestalt_proximity.svg

Principle of similarity
● Similar objects are perceived as a group even of not close by
● Various plots use color / shape to distinguish groups

https://commons.wikimedia.org/wiki/File:Gestalt_similarity.svg

https://commons.wikimedia.org/wiki/File:Gestalt_similarity.svg

How are both principles used here?

Example
separate legend vs marking lines with text in the same color

- using principles of proximity and similarity

Principle of connection
● Connected objects are perceived to form a group
● Stronger than proximity and similarity
● Consider carefully when to use line graph vs. scatter plot

Principle of enclosure
● Enclosed objects are perceived as a member of the group
● Stronger than proximity and similarity
● Useful for highlighting in plots; little is enough (e.g. light background)

Principle of closure
● Our brain fills gaps in figures, connects interrupted lines
● Useful / dangerous when interruptions by design

https://commons.wikimedia.org/wiki/File:Gestalt_closure.svg

https://commons.wikimedia.org/wiki/File:Gestalt_closure.svg

Principle of continuity
Smooth lines are easier to follow than angular and sharp

Frames not necessary, gestalt principles fills them in
(principles of closure and continuity)

Illusions
● Fast visual processing leads to errors
● These are demonstrated by many optical illusions
● Beware not to create illusions in your plots

Illusions: length and size

https://commons.wikimedia.org/wiki/File:M%C3%BCller-Lyer_illusion.svg
https://commons.wikimedia.org/wiki/File:Mond-vergleich.svg

Müller-Lyer and Ebbinghaus illusions

https://commons.wikimedia.org/wiki/File:M%C3%BCller-Lyer_illusion.svg
https://commons.wikimedia.org/wiki/File:Mond-vergleich.svg

Illusions: length, perspective, spatial compensation

https://commons.wikimedia.org/wiki/File:Mueller_lyer.svg
https://commons.wikimedia.org/wiki/File:Ponzo_illusion.gif

https://commons.wikimedia.org/wiki/File:Mueller_lyer.svg
https://commons.wikimedia.org/wiki/File:Ponzo_illusion.gif

Illusions: color

https://en.wikipedia.org/wiki/File:Checker_shadow_illusion.svg
https://commons.wikimedia.org/wiki/File:Grey_square_optical_illusion_proof2.svg

https://en.wikipedia.org/wiki/File:Checker_shadow_illusion.svg
https://commons.wikimedia.org/wiki/File:Grey_square_optical_illusion_proof2.svg

Illusions: color
Mach bands: when bands touch, the edge effect exaggerates their difference

Illusions: color
In heatmap the perception of colors influenced by their surroundings

Working memory
● Iconic memory: extremely short-term

(<1s), simple pre-attentive processing
● Visual short-term memory: many

seconds, but very small capacity (only
3-5 items)

● Long-term memory: store and recall
selected information

Since working memory is small, looking at a
plot with many colors requires back-and-forth
between legend and plot

Chart and table junk
● Chart junk: elements of plots not necessary to convey information
● They unhelpfully catch our attention through pre-attentive attributes
● Most visualization can be improved by simplification
● Some redundancy can be useful

Nice visualizations of the simplification process:

● https://www.darkhorseanalytics.com/blog/data-looks-better-naked
● Also tables, maps and the unpopular pie charts

https://www.darkhorseanalytics.com/blog/data-looks-better-naked
https://www.darkhorseanalytics.com/blog/clear-off-the-table
https://www.darkhorseanalytics.com/blog/data-looks-better-naked-maps-edition
https://www.darkhorseanalytics.com/blog/salvaging-the-pie

Summary
● Pre-attentive attributes are processed by our brains very fast
● Choosing the right attributes from the hierarchy allows accurate

quantification
● Principles of gestalt describe how the brain connects part to the whole
● The brain can also make errors in visual processing as seen in illusions
● Removing chart junk concentrates our attention to the important elements

Additional sources
● Utilizing Gestalt Principles to Improve Your Data Visualization Design
● http://daydreamingnumbers.com/blog/gestalt-laws-data-visualization/
● Albert Cairo: The Functional Art
● C.N. Knaflic: Storytelling with Data
● Stephen Few: Now You See it

https://vizzendata.com/2020/07/06/utilizing-gestalt-principles-to-improve-your-data-visualization-design/
http://daydreamingnumbers.com/blog/gestalt-laws-data-visualization/

Visualizing text data

Visualizing text data
Working with natural text is difficult

● Complex grammar, ambiguous meaning, synonyms, etc.
● Lot of machine learning research
● Nonetheless sometimes simple statistics on frequencies of words or groups of

words can be useful
● Usually we remove stop words (frequent words such as "and", "is"...) and

apply lemmatization (convert inflected words to canonical form, such as
"seen" -> "see")

Word clouds

https://commons.wikimedia.o
rg/wiki/File:State_of_the_uni
on_word_clouds.png

https://commons.wikimedia.org/wiki/File:State_of_the_union_word_clouds.png
https://commons.wikimedia.org/wiki/File:State_of_the_union_word_clouds.png
https://commons.wikimedia.org/wiki/File:State_of_the_union_word_clouds.png

Word clouds
● Display the most common words from a text
● Size of words grows with frequency
● Arranged to be visually pleasing
● Not the best option for understanding/comparing word frequencies
● You can also display word frequencies using bar graphs and other plot types

https://getthematic.com/insights/word-clouds-harm-insights/

Tag cloud
● Endings of German city names typical for

individual regions
● Combination of a word cloud and map
● Figure from Reckziegel et al 2018

http://ieeexplore.ieee.org/abstract/document/8320795

Word tree
Shows with words most often
follow or precede a given word
using a hierarchy

Text: Introduction to The
Origin of Species by Charles
Darwin, 1859, 1872

Figure source

https://en.wikisource.org/wiki/The_Origin_of_Species_(1872)/Introduction
https://www.jasondavies.com/wordtree/?source=1c717cae76b39ad5c0078b70ca918c32&prefix=species&reverse=1&phrase-line=0

Phrase nets
Phrases of type "X of Y", X connected to Y in a graph; source van Ham et al 2009

https://ieeexplore.ieee.org/iel5/2945/5290686/05290726.pdf

Text visualization: additional sources
● Courses Data management (2L), Principles of Data Science (3Z)
● Text visualization browser https://textvis.lnu.se/
● Lecture from Univ. of Washington
● Drawing Elena Ferrante's Profile: Finding out who is Elena Ferrante,

bestselling Italian author (My Brilliant Friend) by comparing word frequencies
etc. (see e.g. page 100)

https://textvis.lnu.se/
https://courses.cs.washington.edu/courses/cse512/15sp/lectures/CSE512-Text.pdf
https://www.research.unipd.it/retrieve/e14fb26a-f8e6-3de1-e053-1705fe0ac030/2018_Tuzzi_Cortelazzo_PUP_Ferrante_9788869381300.pdf

Lecture 10
Presentation of results

Data visualization · 1-DAV-105
Lecture by Broňa Brejová

Acknowledgement: materials inspired by lectures from Martina Bátorová in 2021

https://bbrejova.github.io/viz/

Data analysis project phases

Recall from L08: Data analysis project phases
● Obtaining data
● Data preprocessing, checking, cleaning
● Exploratory analysis
● Formation of hypotheses
● Testing hypotheses
● Explanatory visualizations for the final report / presentation

Details: obtaining data
● Obtaining data

○ This course: we download whole datasets in a tabular form
○ But often also web scraping, manual collection of data, measurements,

surveys,...
○ Requires careful planning

● Data preprocessing, checking, cleaning
● Exploratory analysis
● Formation of hypotheses
● Testing hypotheses
● Explanatory visualizations for the final report / presentation

Details: preprocessing data
● Obtaining data
● Data preprocessing, checking, cleaning

○ Try to understand how (and why) the data was obtained and processed
○ Convert them to a convenient format
○ Check for missing values and suspicious outliers
○ Very important phrase: "Garbage in, garbage out"

● Exploratory analysis
● Formation of hypotheses
● Testing hypotheses
● Explanatory visualizations for the final report / presentation

Details: exploratory analysis
● Obtaining data
● Data preprocessing, checking, cleaning
● Exploratory analysis

○ Try many analyses
○ This course: visualizations and simple statistics
○ Later you learn advanced statistical and machine learning models
○ Less successful attempts may suggest new directions

● Formation of hypotheses
● Testing hypotheses
● Explanatory visualizations for the final report / presentation

Details: Formation of hypotheses
● Obtaining data
● Data preprocessing, checking, cleaning
● Exploratory analysis
● Formation of hypotheses

○ Select visualizations showing interesting trends / exceptions in the data
○ Formulate possible relationships

(but remember, correlation does not imply causation)

● Testing hypotheses
● Explanatory visualizations for the final report / presentation

Details: Testing hypotheses
● Obtaining data
● Data preprocessing, checking, cleaning
● Exploratory analysis
● Formation of hypotheses
● Testing hypotheses

○ Recheck your code and data, try other related analyses
○ Try to find other relevant data or existing analyses by other people
○ If important decisions will be based on your result,

test it particularly thoroughly
(what would happen if our plot was all wrong?)

● Explanatory visualizations for the final report / presentation

Details: Explanatory visualizations
● Obtaining data
● Data preprocessing, checking, cleaning
● Exploratory analysis
● Formation of hypotheses
● Testing hypotheses
● Explanatory visualizations for the final report / presentation

○ Formulate your conclusions
○ Support them with your analysis and visualizations
○ Do not include all exploratory analyses

(but do not hide data contradicting your conclusion)
○ Polish visualizations that you selected

Presentation of results

Presentation of results
● Understand context, audience, goals (more later)
● Tell a story (more later)
● Choose appropriate visuals (text / table / chart, appropriate type of graph,

pre-attentive attributes, hierarchy of graph elements)
● Eliminate clutter, focus attention on the main points

(pre-attentive attributes, such as color, size, spacing)
● Pay attention to design (accessibility due to font size and colors,

aesthetics...)
● Get feedback and a lot of practice

(see Cole Nussbaumer Knaflic: Storytelling with data)

Understand the context of your presentation

Before writing any text or preparing any presentation try to find out:

● Who is your expected audience?
● What do they know and what do you need to explain?
● What might be interesting / new for them?
● What is the medium (live presentation, video, printed text, website)?
● What is the appropriate length (time, number of pages)?
● What do you want to achieve by the presentation?

(inform / entertain / inspire to take a specific action)

Examples
Try to list some examples of situations where data visualization might be
presented: who are speakers and audiences, what are goals

Situations where data visualizations are presented
● A company presents to potential consumers, persuades them to buy their

products
● A charity presents to general public, persuades them to donate
● A nonprofit / government present to general public, persuades them to take

action (live healthily, protect environment, ...)
● An employee presents to colleagues, persuades them to change processes
● A politician presents to general public, persuades them to vote for something
● A journalist writes for general public, informs them about important issues
● A teacher presents to students, teaches them a given topic
● A student presents to a teacher, demonstrates his / her achievements and skills
● A speaker talks to general public, entertains / informs about interesting topics
● A speaker talks to experts, informs about new discoveries, technologies etc.

Presentation of results
● Understand context
● Tell a story
● Choose appropriate visuals
● Eliminate clutter, focus attention on the main points
● Get feedback and a lot of practice

Storytelling
● We are easily captivated by a good story (book, movie, play)

○ We do not want to interrupt reading / watching
○ We can recall the plot afterwards
○ We want to achieve similar effects by your presentation

● Traditional stories structured as basic plot - twists - ending
● This roughly corresponds to introduction, actual content, conclusion
● Repetition useful in stories as well as in presentation
● Suspense and surprise

(see Cole Nussbaumer Knaflic: Storytelling with data)

Storytelling: structuring presentation
● One option is to describe your process of discovery roughly chronologically

(omitting some dead ends): identifying question, getting data, analyzing data,
coming to conclusion, recommending action

● Another option is to lead with the ending: starting with a call to action,
backing it up with data

(see Cole Nussbaumer Knaflic: Storytelling with data)

Cognitive biases

Cognitive bias (kognitívne skreslenie)
● Cognitive bias is a systematic deviation from rational judgement
● A brain mechanism to create shortcuts, allow fast reasoning
● Term introduced by Amos Tversky and Daniel Kahneman in 1972

Very long list of biases discovered by researchers:

https://commons.wikimedia.org/wiki/File:The_Cognitive_Bias_Codex_-_180%2B_
biases,_designed_by_John_Manoogian_III_(jm3).png

https://commons.wikimedia.org/wiki/File:The_Cognitive_Bias_Codex_-_180%2B_biases,_designed_by_John_Manoogian_III_(jm3).png
https://commons.wikimedia.org/wiki/File:The_Cognitive_Bias_Codex_-_180%2B_biases,_designed_by_John_Manoogian_III_(jm3).png

Three cognitive biases
● Patternicity bias: See non-existent patterns in data, even in random noise

(related to seeing faces in the clouds)
● Storytelling bias: Invent "stories", explanations, cause-effect relationships

for these patterns
● Confirmation bias: It is hard to discard our beliefs. We search for evidence

that back our theories and interpret contradicting evidence the opposite way.

See Alberto Cairo: The Truthful Art

https://commons.wikimedia.org/wiki/File:RandomPoints.gif

Cognitive biases in analysis and presentation
● Beware of biases in yourselves during analysis and in your audience during

presentation
● "The first principle is that you must not fool yourself---and you are the easiest

person to fool" Richard Feynman

Do not oversimplify
Story from Alberto Cairo: The Truthful Art

"Study finds that more than a quarter journalism grads wish they'd chosen a
different career" Poynter Institute, 2013

Storytelling bias suggests:

● A change from printed to online media leads to worse job market for
journalists

● Cairo as a journalism professor starts to worry about his future

Journalism grads (cont.)
"Study finds that more than a quarter journalism grads wish they'd chosen a
different career" Poynter Institute, 2013

Actual value is 28%, as found by a survey

● This value by itself is presumably correct
● However it is not put into perspective, compared with other values

http://www.grady.uga.edu/annualsurveys/Graduate_Survey/Graduate.php

Results of Cairo's investigation
● The dissatisfaction among journalism students did not change much over the

years
● Decreases in the number of news reporters and their low salaries
● Survey results imply sampling error which should be considered
● (Ideally compare to grads from other fields)

He suggests reformulating the message of the story:

"Even if jobs prospects for journalists have worsened substantially and they may
worsen even further in the future, the percentage of grads who wish they'd
chosen a different career hasn't changed at all in more than a decade."

Properties of good visualization
● Truthful (based on thorough and honest research, high quality data,

appropriate analysis, correct math, no bugs in code)
● Functional (constitutes an accurate depiction of the data, allows meaningful

comparisons)
● Beautiful (attractive, intriguing, aesthetically pleasing for target audience)
● Insightful (reveals evidence hard to see otherwise)
● Enlightening (changes our minds for the better)

Alberto Cairo: The Truthful Art (journalist's perspective)

Back to thoughts on good visualization

Last lecture
Pre-attentive attributes are quickly recognized by our brain (size, color,
position,...)

Hierarchy of graph elements: not all attributes are good for accurate quantitative
reasoning

Gestalt principles: how brain connects elements into larger patterns (proximity,
similarity, connection, enclosure, closure, continuity,)

Errors in visual processing lead to illusions

This informs our chart type choice (bars vs pies) and elimination of chart junk

Additional aspects of good plot choice
Basic setup: Selecting variables, choosing type of plot, assigning variables to x,
y, color...

Data transformations: filtering (e.g. select data from one region), aggregating
(e.g. summary per region) to avoid overplotting

Additional settings: sorting (e.g. bar graph columns), rescaling (log axis),
re-expressing (e.g. absolute value vs relative change), zooming

Focus and explanation: highlighting, annotating (adding notes to plot)

Inspired by Stephen Few: Now you see it

Speed is not always everything
While there is a place for rapidly-understood graphs, it is too limiting to make
speed a requirement in science and technology, where the use of graphs ranges
from detailed in-depth data analysis to quick presentation. […]
The important criterion for a graph is not simply how fast we can see a result;
rather it is whether through the use of the graph we can see something that would
have been harder to see otherwise or that could not have been seen at all.

William Cleveland, The Elements of Graphing Data, Chapter 2

Recall: exploratory vs. explanatory analysis, sometimes audience can explore too

Recall Minard's plot of French army losses
Easy to see big picture but also many minute details

https://commons.wikimedia.org/wiki/File:Minard.png

https://commons.wikimedia.org/wiki/File:Minard.png

Tables vs. graphs
When is it good to include a table instead of / in addition to a graph?

Tables vs. graphs
Advantages of tables:

● Very few numbers typically better given directly than in a graph
● In a long table, each reader can find items of personal interest (e.g. results of

a sport competition, statistics for all countries)
● A table gives exact values
● Readers can re-analyze the same data (table preferably machine-readable)
● Numbers at very different scales are sometimes difficult to display even with

log axes

See also
https://www.storytellingwithdata.com/blog/2011/11/visual-battle-table-vs-graph

https://www.storytellingwithdata.com/blog/2011/11/visual-battle-table-vs-graph

Examples of bad graphs and their improvements
● http://www.perceptualedge.com/examples.php
● https://eagereyes.org/pie-charts
● https://viz.wtf/

http://www.perceptualedge.com/examples.php
https://eagereyes.org/pie-charts
https://viz.wtf/

Infographics

Some examples of infographics
Several examples that are close to data visualization:

● Income by religious group in US (image, website)
● Deadliest pandemics (website)
● War casualties (website)
● Game of Thrones relationships (website)
● Emergency medical services in Slovakia 2019 (website)

Some explain other types of information:

● Sitting and standing is bad (website)

https://www.columnfivemedia.com/wp-content/uploads/2021/04/good-infographic-the-almighty-dollar-_-mapping-distribution-of-income-by-religious-belief-1.jpeg
https://www.columnfivemedia.com/work/infographic-the-almighty-dollar/
https://www.visualcapitalist.com/history-of-pandemics-deadliest/
https://www.poppyfield.org/
https://www.yworks.com/blog/graph-drawing-contest-2018
https://domov.sme.sk/g/138207/infografiky-ako-funguje-system-zachraniek-na-slovensku
https://www.workwhilewalking.com/new-infographic-shows-the-trouble-with-sitting-and-standing

Data visualization (DV) vs infographics (IG)
● Target audience: IG general public, DV often experts
● Storytelling: often in IG, can be created from multiple DV
● Design and aesthetics: more elaborate in IG, includes graphics elements

and clipart (considered chart junk in DV)
● Process of creation: many simple tools for DV, IG time consuming, often

created by collaboration of data analysis, domain experts and graphic
designers

https://www.statsilk.com/blog/real-difference-between-infographics-and-data-visual
izations

https://www.statsilk.com/blog/real-difference-between-infographics-and-data-visualizations
https://www.statsilk.com/blog/real-difference-between-infographics-and-data-visualizations

1 Lecture 11: Infographics, interactivity, other tools, specialized
plots

Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

Acknowledgement: some materials inspired by lectures from Martina Bátorová in 2021

1.0.1 Several examples of infographics

Several examples that are close to data visualization:

• Income by religious group in US (image, website)
• Deadliest pandemics (website)
• War casualties (website)
• Game of Thrones relationships (website)
• Emergency medical services in Slovakia 2019 (website)

Some explain other types of information:

• Sitting and standing is bad (website)

1.1 Data visualization (DV) vs infographics (IG)
• Target audience: IG general public, DV often experts
• Storytelling: often in IG, can be created from multiple DV
• Design and aesthetics: more elaborate in IG, includes graphics elements and clipart (con-

sidered chart junk in DV)
• Process of creation: many simple tools for DV, IG time consuming, often created by

collaboration of data analysis, domain experts and graphic designers

See also https://www.statsilk.com/blog/real-difference-between-infographics-and-data-
visualizations

1.2 Interactivity
Interactive visualization engages audience, allows them to explore data in depth and according to
their interest.

1.2.1 Examples

• PhD gender gap (website)
• Making it big (website)
• US cities with the same name (website)

1.2.2 Techniques in interactivity visualization

Similar to decisions made in designing a static plot:

• Selecting variables (x, y, color, …)
• Filtering data (selecting table rows)
• Highlighting points or groups

1

https://bbrejova.github.io/viz/
https://www.columnfivemedia.com/wp-content/uploads/2021/04/good-infographic-the-almighty-dollar-_-mapping-distribution-of-income-by-religious-belief-1.jpeg
https://www.columnfivemedia.com/work/infographic-the-almighty-dollar/
https://www.visualcapitalist.com/history-of-pandemics-deadliest/
https://www.poppyfield.org/
https://www.yworks.com/blog/graph-drawing-contest-2018
https://domov.sme.sk/g/138207/infografiky-ako-funguje-system-zachraniek-na-slovensku
https://blog.adioma.com/prolonged-sitting-and-standing-infographic/
https://www.scientificamerican.com/article/how-nations-fare-in-phds-by-sex-interactive1/
https://pudding.cool/2017/01/making-it-big/
https://pudding.cool/2023/03/same-name/

• Aggregating (display countries or region summaries)
• Zooming / panning
• Rescaling (log-scale) / reexpressing (e.g. % instead of counts)
• Sorting (e.g. bars in bargraphs)
• Displaying details (tooltips)
• Annotating
• Bookmarking

(Stephen Few)

1.2.3 Dashboard

• A display consisting of mutiple plots, summarizing current state of important indicators
(e.g. of a business, pandemics, …)

• Inspired by dashboards in cars and planes
• Often interactive, but main features in default view

Two SARS-CoV-2 examples:

• WHO
• Nextstrain

– many options: selecting color, filtering, highlighting, aggregating, zooming and panning
(maps and tree), rescaling (time vs divergence), tooltips, bookmarking

1.2.4 Interactivity in Plotly Express

All Plotly plots by default have some interactivity:

• Filtering groups
• Zooming / panning
• Details
• Spike lines

Example 1: Country indicators from World Bank, https://databank.worldbank.org/home under
CC BY 4.0 license.

Regions can be switched on and off.

[1]: import plotly.express as px
import pandas as pd
url = 'http://compbio.fmph.uniba.sk/vyuka/viz/images/9/9d/World_bank.csv'
countries = pd.read_csv(url)

px.scatter(
countries, x="GDP2018", y="Expectancy2018", color="Region",
hover_data=['Country'],
title="Country indicators 2018", log_x=True,
width=800, height=500

)

Example 2: Life expectancy data provided free by the Gapminder foundation under the CC-BY
license.

2

https://covid19.who.int/
https://nextstrain.org/ncov/global
https://plotly.com/python/hover-text-and-formatting/
https://www.gapminder.org/data/

Compare data along the x coordinate.

[2]: url="http://compbio.fmph.uniba.sk/vyuka/viz/images/3/33/
↪Gapminder_life_expectancy_years.csv"

orig_expectancy = pd.read_csv(url)
expectancy = pd.melt(orig_expectancy, id_vars=["country"], var_name="year")
expectancy['year'] = expectancy['year'].astype(int)

[3]: selected = expectancy.query("country=='Slovak Republic' or country=='France'")
fig=px.line(

selected, x="year", y="value", color="country",
title="Life expectancy", width=800, height=500

)
fig.update_layout(hovermode="x unified")

1.2.5 More interaction with Dash by Plotly

• Dash library by Plotly allows adding control elements (selectors, sliders, buttons, …)
• We have seen an example in L01

1.3 Other visualization tools
Non-programmers typically create plots in spreadsheets:

• Excel (examples)
• Google sheets (examples)

System R: programming language for statistical computing

• Together with Python, very popular in data science
• Built-in plots
• Also other libraries, notably ggplot2 based on system called Grammar of Graphics (cheat-

sheet)

Javascript

• Programming language popular in web programming
• Google charts for Javascript (examples)
• D3.js library (Data-Driven Documents)

Tableau

• Advanced visualization tools, commercial
• Gallery

Microsoft Power BI

• Interactive data visualization software with a focus on business intelligence
• An example

3

https://support.microsoft.com/en-us/office/available-chart-types-in-office-a6187218-807e-4103-9e0a-27cdb19afb90
https://support.google.com/docs/answer/190718
https://ggplot2.tidyverse.org/
https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf
https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf
https://developers.google.com/chart/interactive/docs/gallery
https://d3js.org/
https://www.tableau.com/solutions/gallery
https://powerbi.microsoft.com/en-us/power-bi-visuals/

1.4 Several specialized visualization types
1.4.1 UML diagrams in computer science

• Display relationships between different classes or other components and aspects of software

https://commons.wikimedia.org/wiki/File:UML_diagrams_overview.svg Derfel73; Pmerson

1.4.2 Waterfall chart

• Used in bussiness analysis: financial, inventory, human resources etc.
• Displays effects decreasing or increasing a given value
• The first and last columns are bars displaying starting and final value
• Intermediate columns float, displaying changes from previous total
• Description

https://commons.wikimedia.org/wiki/File:Waterfallchart_ex2.jpg FusionCharts Blog, CC BY-SA
4.0

1.4.3 Funnel charts

• Display losses within a business process, e.g from website visit to actual purchase
• Horizontal bar chart with centered bars
• Beware: different from funnel plot in medical meta-analyses of multiple publications

[4]: # example from https://plotly.com/python/funnel-charts/
data = dict(

number=[39, 27.4, 20.6, 11, 2],
stage=["Website visit", "Downloads", "Potential customers", "Requested␣

↪price", "invoice sent"])
fig = px.funnel(data, x='number', y='stage')
fig.show()

1.4.4 Gantt chart

• Used in management to display project schedule with different tasks and their planned dura-
tion

• Can also display current status of tasks and their dependencies

https://commons.wikimedia.org/wiki/File:GanttChartAnatomy.svg

1.4.5 Candlestick chart

• Similar to boxplot, used in financial data, e.g. stocks, currency exchange rates
• Line: minimum and maximum, box: opening and close, color: increase or decrease

https://commons.wikimedia.org/wiki/File:Candlestick_Chart_in_MetaTrader_5.png

4

https://www.storytellingwithdata.com/blog/2020/11/16/what-is-a-waterfall
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2127453/pdf/9310563.pdf

