Lecture 1a Visualization: History and Examples

Data visualization · 1-DAV-105 Lecture by Broňa Brejová

René Descartes, La Géométrie, 1637

Introduced Cartesian coordinate system, similar ideas also Nicole Oresme (14th century)

LA GEOMETRIE. LIVRE PREMIER.

Des problesmes qu'on peut construire sans y employer que des cercles or des lignes droites.

Ous les Problesmes de Geometrie se peuvent facilement reduire a tels termes, qu'il n'est besoin par aprés que de connoiftre la longeur de quelques lignes droites, Dour les construire.

Et comme toute l'Arithmetique n'est composée, que commet de quatre ou cinq operations, qui font l'Addition, la le calcul Souftraction, la Multiplication, la Diuision, & l'Extra-thmetiction des racines, qu'on peut prendre pour vne espece que se de Division : Ainfi n'at'on autre chose a faire en Geo- aux opemetrie touchant les lignes qu'on cherche, pour les pre- Geomeparer a estre connuës, que leur en adiouster d'autres, ou me. en ofter, Oubien en ayant vne, que se nommeray l'vnité pour la rapporter d'autant mieux aux nombres, & qui peut ordinairement eftre prife a difcretion, puis en avant encore deux autres, en trouuer vue quatriesme, qui soit à l'vne de ces deux, comme l'autre est a l'vnité, ce qui est le mesme que la Multiplication, oubien en trouuer vne quatriesme, qui soit a l'vne de ces deux, comme l'vnité

William Playfair, Commercial and Political Atlas, 1786

Playfair invented or popularized different types of graphs (line and area graphs, bar graphs, pie charts)

https://commons.wikimedia.org/wiki/File:1786_Playfair_-_Chart_of_import_and_exports_of_England_to_and_from_all_North_America_from_ the_year_1770_to_1782.jpg

John Snow, On the Mode of Communication of Cholera, 1854

Snow tracked cholera cases in 1854 outbreak and displayed them clustered around a single London well

Florence Nightingale, Diagram of the causes of mortality in the army in the East, 1858

Nightingale led a field hospital during Crimean War, reported to the government on poor conditions causing deaths from typhus, cholera etc

Charles Minard, Figurative Map of the successive losses in men of the French Army in the Russian campaign 1812–1813, 1869

https://commons.wikimedia.org/wiki/File:Minard.png

Pierre Émile Levasseur, 1876

Otto Neurath, Gesellschaft und Wirtschaft, 1930

https://www.digital.wienbibliothek.at/wbrobv/content/pageview/2296000

Mann, Bradley & Hughes: Northern hemisphere temperatures during the past millennium[...] 1999

Hockey stick graph, created publicity and controversy, featured also in 2001 Intergovernmental Panel on Climate Change Third Assessment Report

https://en.wikipedia.org/wiki/File:T_comp_61-90.pdf CC BY-SA Klaus Bittermann; original article http://www.geo.umass.edu/faculty/bradley/mann1999.pdf

Anderson & Daniels: Film Dialog from 2,000 Screenplays, Broken Down by Gender and Age, 2016

36%/64%

https://pudding.cool/2017/03/film-dialogue/

Gapminder foundation, World Health Chart 2019, 2020

Original version by Hans Rosling in his 2006 TED talk

https://www.gapminder.org/fw/world-health-chart/whc2019/ CC-BY, free license

Two other recent examples

Comparing size of software

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Deadly pandemics in history

https://www.visualcapitalist.com/history-of-pandemics-deadliest/

Additional resources

• Tableaux.com: Data is beautiful: 10 of the best data visualization examples from history to today

https://www.tableau.com/learn/articles/best-beautiful-data-visualization-examp les

- Michael Friendly: History of Data Visualization
 <u>https://friendly.github.io/HistDataVis/</u>
- Hans Rosling The best stats you've ever seen (TED Talk) <u>https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen</u>

1 Lecture 1b: Introduction to Jupyter Notebooks, Google Colab and Matplotlib

Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

1.1 Jupyter Notebook

- Jupyter Notebook is a web-based software for interactive work in Python.
- It is frequently used for data processing and visualization.
- A document called **notebook** consists of **cells**.
- Each cell contains either text or Python code.
- The text may include formatting in Markdown language.
- A cell with Python code can be executed and the results display below, including images.
- This presentation is a Jupyter notebook.
- Notebook files have extension .ipynb.

1.2 Google Colab and alternatives

- You can work with Jupyter notebooks on many platforms (both online and installed on your computer).
- In this course, we will primarily use Google Colab.
- Colab stores your notebooks on Google drive, executes them on Google servers, you only need web browser on your computer.
- It integrates well with Google Classroom, which we use as well.
- You are free to use other options as long as the submitted notebooks can be executed in Colab.
- One popular option is VS Code. It requires Jupyter software to be installed as well, see documentation.

1.3 How to use Notebooks

- Notebooks have an intuitive interface with menus, toolbars, context menus (right-click) etc.
- It is useful to learn some keyboard shortcuts.

When you are not editting a cell:

- use Up and Down arrows to move between cells
- use **Enter** (or double-click) to start editing a cell
- use **Esc** to stop editing a cell
- use **Ctrl-Enter** to run a code in a cell, **Shift-Enter** to run the code and move to the next cell

1.3.1 An example of a code cell

- A cell can include imports, function definitions, commands.
- Variables will be visible in other cells.
- The results of print are shown below the cell when executed.
- The last expression is printed below the cell when executed.

```
[1]: # create variable x with list of numbers 0,1,...,19
x = list(range(20))
# variable y will contain squares of values in x
y = [xval * xval for xval in x]
# print x and y
print(x)
print(y)
# the last value (the first 5 values in y) is also printed automatically
y[0:5]
```

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361]

[1]: [0, 1, 4, 9, 16]

1.3.2 Example of a cell with a plot

The plot uses variables x and y from the previous cell to plot the quadratic function.

```
[2]: import matplotlib.pyplot as plt
# create figure with a single plot (axes)
figure, axes = plt.subplots()
# plot x vs y
axes.plot(x, y, '.')
# command pass to suppress unwanted output from plot
pass
```


1.4 Matplotlib library

- Matplotlib is a Python library for creating plots.
- In the code above, axes is the Matplotlib name for a single plot.
- Let us now plot two functions: quadratic and cubic in the same plot.

```
[3]: # x_dense is values from 0 to 10 with step 0.1
x_dense = [val / 10 for val in range(0, 100)]
# values in y2_dense are values from x_dense squared
y2_dense = [xval ** 2 for xval in x_dense]
# values in y3_dense are values from x_dense to the power of 3
y3_dense = [xval ** 3 for xval in x_dense]
# plot the quadratic and cubic function in a single plot
figure, axes = plt.subplots()
axes.plot(x_dense, y2_dense, '.')
axes.plot(x_dense, y3_dense, '.')
pass
```


1.4.1 Setting labels and titles in Matplotlib

```
[4]: # the same plot as before, but name the two sets of points by label
figure, axes = plt.subplots()
axes.plot(x_dense, y2_dense, '.', label="quadratic")
axes.plot(x_dense, y3_dense, '.', label="cubic")
# add titles for axes (usually use a more descriptive titles)
axes.set_xlabel("x")
axes.set_ylabel("f(x)")
# legend (which plot is which function), uses the labels set in plt.plot
```

```
axes.legend()
# a title of the whole plot
axes.set_title("A plot of the quadratic and cubic functions")
pass
```


1.4.2 Setting lines, markers and colors

- In the axes.plot command, '.' represents formatting, in this case a small dot.
- The formatting string has three optional parts: marker, line, color.
- Examples: 'or' red circle, '-g' green solid line, '--' dashed line.
- See more in documentation.

```
[5]: x_sparse = range(0, 10)
y2_sparse = [xval ** 2 for xval in x_sparse]
y3_sparse = [xval ** 3 for xval in x_sparse]
figure, axes = plt.subplots()
axes.plot(x_sparse, y2_sparse, 'o-')
axes.plot(x_sparse, y3_sparse, '.--')
pass
```


1.4.3 Multiple plots per image

- Function plt.subplots can take as arguments the number of rows and the number of columns and creates multiple subplots per image.
- Why is this figure not an ideal visual comparison of the quadratic and cubic function?

```
[6]: figure, axes = plt.subplots(1, 2)
axes[0].plot(x_dense, y2_dense)
axes[1].plot(x_dense, y3_dense)
pass
```


- Each plot has a different y-axis, which is not good, because we do not immediately see that the cubic function grows much faster than the quadratic.
- We will fix this in the next plot using sharey=True setting (sharex=True also exists but here it is not needed).

```
[7]: # fixing the problem with different y-axis
figure, axes = plt.subplots(1, 2, sharey=True)
axes[0].plot(x_dense, y2_dense)
axes[1].plot(x_dense, y3_dense)
pass
```


1.5 Dangers of notebooks

- Frequent use pattern: the users have several cells finished and executed, they work on the last cell in the notebook, and run it repeatedly until it works correctly. This avoids repeated execution of the top cells, which may be slow.
- Notebooks do not force you to run cells in order from top to bottom. This generates problems if you skip some cells or execute them repeatedly.

Good practice suggestions:

- Do not modify variables introduced in other cells.
- Refactor bigger or repeated parts of code to functions. This also hides local variables from the rest of the notebook and thus prevents clashes.
- Ideally move functions to separate modules but this is harder in Colab.
- Avoid running cells out of order and occasionally restart the kernel (to remove variables) and run all cells (using a menu function).

Below we see an example not obeying the first recommendation; the value printed will depend on how many times we execute the second cell. This can lead to hard-to-find errors in a more complex case.

[8]: value = 0

```
[9]: value += 1
print(value)
```

1

1.6 Additional resources

- Python Data Science Handbook by Jake VanderPlas, O'Reilly 2016
- Jupyter Notebook documentation
- Google Colab website and introductory video
- Matplotlib tutorials
- I don't like notebooks by Joel Grus (entertaining video explaining some of the pitfalls of notebooks)

1 Lecture 1b: Quick Introduction to New Libraries

Data Visualization $\,\cdot\,$ 1-DAV-105

Lecture by Broňa Brejová

- We will now briefly discuss several libraries which will be used in the next tutorial.
- We will cover details of these libraries in the coming weeks, this is just a glipse of things to come.

```
[1]: # importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
```

1.1 Libraries NumPy and Pandas

- Pandas is a Python library for working with tabular data.
- NumPy is a library of efficient multi-dimensional arrays used for numerical computations.

1.1.1 NumPy array and arithmetical operations with arrays

- Function np.arange below creates a list of numbers in interval [1,3) with step 0.5 (generalization of Python range).
- It is stored as an object of array class from the Numpy library.

```
[2]: x = np.arange(1, 3, 0.5)
print('x:', x)
```

```
x: [1. 1.5 2. 2.5]
```

- We can do various arithmetic operations on whole NumPy arrays or apply predefined functions such as np.exp.
- Such operations are typically done element-by-element.

```
[3]: print('x:', x)
    print('x+1:', x+1)
    print('x*x:', x*x)
    print('np.exp(x):', np.exp(x))
```

```
x: [1. 1.5 2. 2.5]
x+1: [2. 2.5 3. 3.5]
x*x: [1. 2.25 4. 6.25]
np.exp(x): [ 2.71828183 4.48168907 7.3890561 12.18249396]
```

1.1.2 Creating Pandas DataFrame

• Below we create an object of Pandas DataFrame class.

• We will cover most Pandas functions used below next week, for now the details are not important.

```
[4]: def convert_table(x, function_dict):
         """ x is a list (or Numpy array) of values of x,
         function_dict is a dictionary containing function names as keys
         and lists of function values as values. The result will be a Pandas
         DataFrame (table) with each row containing triple x, function, value.
         Zeroes and negative values are masked as missing
         to avoid problems with logarithmic y axis."""
         # check that all functions have the same number of values as x
         for f in function_dict:
             assert(len(function_dict[f])==len(x))
         # create a wide table with each function as one columns
         functions_wide = pd.DataFrame(function_dict, index=x)
         # reformat to long format
             where each row is a triple x, function name, function value
         #
         functions = (functions_wide.reset_index()
                      .melt(id_vars='index')
                      .rename(columns={'variable':'function', 'index':'x'}))
         # mask values <= 0 as missing values</pre>
         val = functions['value']
         functions['value'] = val.mask(val <= 0, np.nan)</pre>
         return functions
```

```
[5]: functions = convert_table(x, {'quadratic': x * x, 'cubic': x * x * x})
```

Let us look at the resulting table functions:

- It has three columns named 'x', 'function' and 'value'.
- Each row is a triple, containing a function name and the values of x and f(x).
- E.g. one of the rows for the cubic function has x = 2 and $f(x) = 2^3 = 8$.

[6]: display(functions)

	x	function	value
0	1.0	quadratic	1.000
1	1.5	quadratic	2.250
2	2.0	quadratic	4.000
3	2.5	quadratic	6.250
4	1.0	cubic	1.000
5	1.5	cubic	3.375
6	2.0	cubic	8.000
7	2.5	cubic	15.625

1.2 Displaying Pandas DataFrame using Seaborn and Plotly libraries

- Seaborn library is an extension of Matplotlib.
- It is very convenient for displaying tables.
- In the **sns.lineplot** we first give the table and then specify, which columns should be used as x coordinate, y coordinate and color (hue).
- One line will be automatically drawn for each distinct value in the hue column and a legend will be added.

[7]: figure, axes = plt.subplots()
sns.lineplot(functions, x='x', y='value', hue='function', ax=axes)
pass

- Another popular library is Plotly.
- It provides some additional plot types and all plots are interactive.
- For example, we can also zoom into parts of the plot by selecting a rectangle.
- A menu with additional options appears in the top right corner of the plot.
- A line plot is created similarly as in Seaborn (option color is used instead of hue).

```
[8]: figure = px.line(functions, x="x", y="value", color='function')
figure.show()
```

1.3 Interactive plots in Plotly Dash

- Dash library by Plotly allows adding control elements (selectors, sliders, buttons, ...).
- It is not preinstalled in Colab, so the next line will install it.

[]: ! pip install dash

- The code below creates an interactive plot in which the user can choose which functions from the list to display.
- The code has many comments so read through it carefully.

```
[10]: from dash import Dash, dcc, html, Input, Output
      # create a list of all functions
      all_functions = list(functions['function'].unique())
      # create a new dash application app
      app = Dash(__name__)
      # Create layout of items in application
          one html <div> item containing text as small headwers (H4),
      #
          items for individual inputs and a graph at the bottom
      #
      # Currently we have two inputs:
          an input field for entering title text
      #
          checkboxes for selecting functions
      #
      # These elements have identifiers which will be used later in the code
      app.layout = html.Div([
          html.H4("Plot title: "),
          # input field for entering title text:
          dcc.Input(
              id='graph-title',
              type='text',
              value='My plot'
          ),
          html.H4("Select functions: "),
          # checkboxes for selecting functions:
          dcc.Checklist(
              id='selected-functions',
              options=all_functions,
              value=['quadratic'],
              inline=True  # place checkboxes horizontally
          ),
          # graph itself
          dcc.Graph(id='graph-content')
      ])
      # Capp.callback is a function decorator applied to function update_figure below.
      # It defines that this function will be called to update the graph when the
       \hookrightarrowuser makes a change.
           Input will be the value entered to the input field with id graph-title and
      #
             the list of functions selected in dcc. Checklist object with id
       \Rightarrow 'selected-functions'.
      #
           Output will be the graph created by the function update_figure below,
       →which will be used
```

```
to update dcc.Graph object with id 'graph-content'
#
@app.callback(
   Output('graph-content', 'figure'),
    [Input('graph-title', 'value'),
    Input('selected-functions', 'value')
   ]
)
def update_figure(title, selected_functions):
    """ Function for ploting functions listed in list selected_functions
   with plot title given in title"""
   # select a subset of functions table with just those functions in input list
   functions_subset = functions.query('function in @selected_functions')
    # create a plotly line plot using the smaller table in functions subset
   figure = px.line(
        functions_subset, x="x", y="value", color="function",
        width=800, height=500
   )
   # add title to the plot
   figure.update_layout(title_text=title)
   return figure
# run the whole application
app.run_server(mode='inline')
```

<IPython.lib.display.IFrame at 0x7f8f001c8e80>

1 Lecture 2: Data processing in Pandas library

Data Visualization $\,\cdot\,$ 1-DAV-105

Lecture by Broňa Brejová

1.1 Tabular data

- We will often work with data in the form of tables.
- Columns represent different features / variables (príznaky, atribúty, veličiny, premenné).
- Rows represent different items / data points / observations (countries, people, dates of measurement, ...).
- A small example:

Country	Region	Population	Area $(km2)$	Landlocked
Slovakia	Europe	5450421	49035	yes
Czech Republic	Europe	10649800	78866	yes
Hungary	Europe	9772756	93030	yes
Poland	Europe	38386000	312696	no

1.2 Pandas library

- Pandas is a Python library for data manipulation and analysis.
- It is fast and has many functions for data import and export in various formats.
- Documentation, overview, tutorial

Basic data structures

- Series: 1D table, all elements of the same type.
- DataFrame: 2D table, elements within each column of the same type.

NumPy library

- NumPy is a library of efficient multi-dimensional arrays used for numerical computations.
- We will mostly use Pandas, but some NumPy functions will be useful.
- Tutorial, reference

[93]: import numpy as np

```
import pandas as pd
from IPython.display import Markdown
import matplotlib.pyplot as plt
```

1.2.1 Creating Series and DataFrames

- Bellow we show two manual ways of creating a DataFrame containing the small table of countries above.
- The first way gets a Series for each column, the second way gets a dictionary (or a tuple) for each row.
- We will usually read tabular data from files, see an example in the second half this lecture.

```
[94]: countries = pd.Series(['Slovakia', 'Czech Republic', 'Hungary', 'Poland'])
      regions = pd.Series(['Europe', 'Europe', 'Europe'])
      populations = pd.Series([5450421, 10649800, 9772756, 38386000])
      areas = pd.Series([49035, 78866, 93030, 312696])
      landlocked = pd.Series([True, True, True, False])
      table = pd.DataFrame({'country':countries,
                          'region':regions,
                          'population':populations,
                          'area':areas.
                          'landlocked':landlocked})
      # display: special notebook command for pretty-printing data
      display(table)
               country region population
                                              area landlocked
              Slovakia Europe
                                   5450421
                                             49035
                                                          True
     0
       Czech Republic Europe
     1
                                  10649800
                                             78866
                                                          True
     2
               Hungary Europe
                                   9772756
                                             93030
                                                          True
                Poland Europe
     3
                                  38386000 312696
                                                         False
[95]: list_of_dicts = [
          {'country':'Slovakia', 'region':'Europe', 'population':5450421, 'area':
       ⇔49035, 'landlocked':True},
          {'country':'Czech Republic', 'region':'Europe', 'population':10649800,

¬'area':78866, 'landlocked':True},

          {'country':'Hungary', 'region':'Europe', 'population':9772756, 'area':
       →93030, 'landlocked':True},
          {'country': 'Poland', 'region': 'Europe', 'population': 38386000, 'area':
       →312696, 'landlocked':False},
      ]
      table_from_list = pd.DataFrame.from_records(list_of_dicts)
      display(table_from_list)
```

	country	region	population	area	landlocked
0	Slovakia	Europe	5450421	49035	True
1	Czech Republic	Europe	10649800	78866	True
2	Hungary	Europe	9772756	93030	True
3	Poland	Europe	38386000	312696	False

1.2.2 Accessing elements of Series and DataFrame by position

- Attribute ndim is the number of dimensions. E.g. areas.ndim is 1, table.ndim is 2.
- Attribute shape is a tuple holding the size in each dimension. E.g. areas.shape is (4,), table.shape is (4,5).
- Rows and columns are numbered 0, 1, ...
- To access a particular column / row, use some_series.iloc[row] or some_table.iloc[row, column].
- Rows and columns in iloc can be
 - a single number e.g. 0,

- a slice (range) e.g. 0:2 or : for everything,
- a list of positions e.g. [0, 2, 3]
- a list of boolean values [True, False, True, True].
- The result is a single element or a Series / DataFrame of a smaller size.

```
[96]: display(Markdown("**table:**"), table)
```

```
display(Markdown("**table.iloc[1, 2]:**"), table.iloc[1, 2])
display(Markdown("**table.iloc[[0, 2, 3], 0:2]**"), table.iloc[[0, 2, 3], 0:2])
display(Markdown("**table.iloc[[True, False, True, True], :]**"),
        table.iloc[[True, False, True, True], :])
```

table:

	country	region	population	area	landlocked
0	Slovakia	Europe	5450421	49035	True
1	Czech Republic	Europe	10649800	78866	True
2	Hungary	Europe	9772756	93030	True
3	Poland	Europe	38386000	312696	False

```
table.iloc[1, 2]:
```

10649800

table.iloc[[0, 2, 3], 0:2]

	country	region
0	Slovakia	Europe
2	Hungary	Europe
3	Poland	Europe

```
table.iloc[[True, False, True, True], :]
```

	country	region	population	area	landlocked
0	Slovakia	Europe	5450421	49035	True
2	Hungary	Europe	9772756	93030	True
3	Poland	Europe	38386000	312696	False

1.2.3 Views vs. copies

- Accessing parts of tables by iloc may return a partial copy or simply a "view".
- If we later modify this result, it is not clear if the original table is modified.
- Direct assignment of new values to a part of the table works: some_table.iloc[row, column] = new_value modifies some_table.
- To copy a table, use other_table = some_table.copy(deep=True).

```
[97]: table2 = table.copy(deep=True)
# create a copy of the original table
table2.iloc[0,0] = 'Slovensko'
display(table2)
# table2 now has Slovensko instead of Slovakia
```

```
countries2 = table2.iloc[: , 0]
# countries2 is now a view or a copy of one column of table2
countries2.iloc[2] = 'Madarsko'
display(table2)
# table2 now can have Hungary or Madarsko
# we get a warning
```

	country	region	population	area	landlocked
0	Slovensko	Europe	5450421	49035	True
1	Czech Republic	Europe	10649800	78866	True
2	Hungary	Europe	9772756	93030	True
3	Poland	Europe	38386000	312696	False

/tmp/ipykernel_1087193/2667016646.py:10: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandasdocs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy countries2.iloc[2] = 'Maďarsko'

	country	region	population	area	landlocked
0	Slovensko	Europe	5450421	49035	True
1	Czech Republic	Europe	10649800	78866	True
2	Maďarsko	Europe	9772756	93030	True
3	Poland	Europe	38386000	312696	False

1.2.4 Inplace operations

- Many operations return a new table.
- If you do not need the original table, you can specify option inplace=True.
- The example below sorts a table by a specified column, returning a new table or replacing the old one.

```
[98]: # copy original table to table2
```

```
table2 = table.copy(deep=True)
```

```
# table3 is a copy of table2 sorted by population size
table3 = table2.sort_values(by="population")
```

```
# display both table2 and table3
display(Markdown("**Original table2:**"), table2)
display(Markdown("**Sorted table3:**"), table3)
```

```
# now change table2 to be sorted by name of the country
table2.sort_values(by="country", inplace=True)
display(Markdown("**Sorted table2:**"), table2)
```

Original table2:

country region population area landlocked

0	Slovakia	Europe	5450421	49035	True		
1	Czech Republic	Europe	10649800	78866	True		
2	Hungary	Europe	9772756	93030	True		
3	Poland	Europe	38386000	312696	False		
So	Sorted table3:						
	country	region	population	area	landlocked		
0	Slovakia	Europe	5450421	49035	True		
2	Hungary	Europe	9772756	93030	True		
1	Czech Republic	Europe	10649800	78866	True		

Sorted table2:

Poland Europe

3

	country	region	population	area	landlocked
1	Czech Republic	Europe	10649800	78866	True
2	Hungary	Europe	9772756	93030	True
3	Poland	Europe	38386000	312696	False
0	Slovakia	Europe	5450421	49035	True

1.2.5 Indexes

• Rows and columns have both an integer location (0,1,2,...) and an index (name).

38386000 312696

- In our table, column names are 'country', 'region' etc.
- We have not named rows, so a default location-based index was constructed.
 See the sorted tables above—their index labels are kept from the original.
- Indexes can be obtained by attributes index and columns.
- We can set the country name as an index using set_index, the opposite is reset_index (in Series, use set_axis and reset_index).

False

• Index can be more complex (multiindex), we will see later.

table.columns is an object of class Index:

Index(['country', 'region', 'population', 'area', 'landlocked'], dtype='object')

table.columns.values is an array of column names:

table.index.values is an array of row names, here equal to location:

array([0, 1, 2, 3])

index for Series areas:

array([0, 1, 2, 3])

table after setting country name as index:

	region	population	area	landlocked
country				
Slovakia	Europe	5450421	49035	True
Czech Republic	Europe	10649800	78866	True
Hungary	Europe	9772756	93030	True
Poland	Europe	38386000	312696	False

reset_index will put the index back as a column:

	country	region	population	area	landlocked
0	Slovakia	Europe	5450421	49035	True
1	Czech Republic	Europe	10649800	78866	True
2	Hungary	Europe	9772756	93030	True
3	Poland	Europe	38386000	312696	False

1.2.6 Accessing elements by index

- Method some_table.loc[row, column] is an analog of iloc, but using indexes rather than locations.
- You can also use [], and pandas will try to guess whether it is an index or location (but sometimes it may guess wrong, so it is better to use explicit iloc and loc).
- Some examples for Series:

populations2 Series with index:

 Slovakia
 5450421

 Czech Republic
 10649800

 Hungary
 9772756

 Poland
 38386000

 dtype:
 int64

populations2.loc['Slovakia']:

5450421

populations2.loc[['Slovakia', 'Poland']]:

Slovakia 5450421 Poland 38386000 dtype: int64

populations2[1] and populations2['Czech Republic']:

10649800

10649800

1.2.7 Operations and functions on Series

- Operations such as +, * can be applied on two Series, causing them to be used on each corresponding pair of elements.
- For example, populations / areas will compute population density for each country.
- You can also use a single number (scalar) as an operand, e.g. populations / 1e6 will get population in millions.
- NumPy also contains functions that can be applied to each element of a series, e.g. np.log(populations).
- Relational operators such as populations < 10e6 produce Series of boolean values.
 Those can be then used in [] or loc.

```
[101]: # creating two Series with country as index
```

populations2 / areas2:

Slovakia	111.153686
Czech Republic	135.036644
Hungary	105.049511
Poland	122.758206
dtype: float64	
populations2 /	1e6:

```
Slovakia
                   5.450421
Czech Republic
                  10.649800
Hungary
                   9.772756
Poland
                  38.386000
dtype: float64
populations2 > 10e6:
Slovakia
                  False
Czech Republic
                   True
Hungary
                  False
Poland
                   True
dtype: bool
areas2[populations2 > 10e6]:
Czech Republic
                   78866
Poland
                  312696
dtype: int64
np.log10(populations2):
Slovakia
                  6.736430
Czech Republic
                  7.027341
Hungary
                  6.990017
Poland
                  7.584173
dtype: float64
```

Beware: when we combine two Series, e.g. by +, Pandas will use index, not position, to pair up elements.

```
[102]: a = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
b = pd.Series([10, 20, 30], index=['c', 'a', 'e'])
c = pd.Series([100, 200])
display(Markdown("**Series a:**"), a)
display(Markdown("**Series b:**"), b)
display(Markdown("**Series c:**"), c)
display(Markdown("**Series a+b:**"), a + b)
display(Markdown("**Series a+c:**"), a + c)
```

Series a:

a 1 b 2 c 3 d 4 dtype: int64

Series b:

c 10

a 20

30 е dtype: int64 Series c: 0 100 1 200 dtype: int64 Series a+b: 21.0 а b NaN 13.0 с d NaN NaN e dtype: float64 Series a+c: NaN а NaN b NaN С d NaN 0 NaN NaN 1

dtype: float64

1.2.8 Working with DataFrame columns

- DataFrame is similar to a dictionary of Series objects (columns).
- For example, table['area'] or table.area is the column of country areas.
- New columns can be added to a DataFrame: table['density'] = table['population']
 / table['area']
- But table[0:2] are the first 2 rows of the table.
 To be save, use loc[] / iloc[] rather than just [].
- By table[table['population'] > 1e7] we get countries with more that 10 million people (CZ, PL).

```
[103]: display(Markdown("**`table['area']`:**"), table['area'])
display(Markdown("**`table.area`:**"), table.area)
display(Markdown("**Adding density:**"))
display(Markdown("`table['density'] = table['population'] / table['area']`"))
table['density'] = table['population'] / table['area']
display(Markdown("**`table[0:2]`:**"), table[0:2])
display(Markdown("**`table[table['population'] > 1e7]`:**"),
table[table['population'] > 1e7])
```

table['area']:

```
0 49035
```

```
1 78866
```

2 93030 3 312696 Name: area, dtype: int64

table.area:

0 49035 1 78866 2 93030 3 312696 Name: area, dtype: int64

Adding density:

```
table['density'] = table['population'] / table['area']
```

table[0:2]:

	country	region	population	area	landlocked	density
0	Slovakia	Europe	5450421	49035	True	111.153686
1	Czech Republic	Europe	10649800	78866	True	135.036644

table[table['population'] > 1e7]:

	country	region	population	area	landlocked	density
1	Czech Republic	Europe	10649800	78866	True	135.036644
3	Poland	Europe	38386000	312696	False	122.758206

1.2.9 Selecting table rows with query

- Method query is very useful for selecting DataFrame rows satisfying some properties.
- In examples below, **©** substitutes variable value.
- While loc[] and iloc[] raise an exception if the requested value is not found, query can return an empty table.

```
table.query("country=='Slovakia'"):
```

country region population area landlocked density O Slovakia Europe 5450421 49035 True 111.153686 The same but for Hungary and using a function:

	country	region	population	area	landlocked	density
2	Hungary	Europe	9772756	93030	True	105.049511

Query with an empty result:

table.query("population < 10e6 and not landlocked"):</pre>

```
Empty DataFrame
Columns: [country, region, population, area, landlocked, density]
Index: []
```

1.2.10 Importing and exporting data

- Import and export is possible using many file formats (text-based CSV, JSON, HTML; binary Excel, HDF5 etc.).
- We will mostly use CSV (=comma separated values) format.
 - Each table row is one line of the file.
 - Columns are separated by commas.
 - Columns containing commas or end-of-line characters may be enclosed in quotation marks.
 - Sometimes a different column separator is used, e.g. tab "\t".
- Writing our table to a csv file: table.to_csv("countries.csv").
 - If run in Colab, this will create a temporary file, which you can save on your computer (see the right panel, tab Files).
- Conversely, table2 = pd.read_csv("countries.csv", index_col=0) will read data from the file to a new DataFrame called table2.
- Input and output functions allow you to set many optional arguments to tweak the format.

1.3 Example: a table of country populations from the United Nations

- Obtained from the UN webpage https://data.un.org/
- We will read the table in CSV format directly from a URL.
- We need to play a bit with settings:
 - We skip the top two lines.
 - We supply our own (simpler) column names.
 - We specify character encoding (default is UTF8) and that thousands are separted by a comma in numerical values, such as 1,000,000.
 - Note that empty fields (missing values) are imported as np.NaN.

[105]: # original source:
print the first 5 rows to check the result
un_table.head()

[105]: Region ID Region Year Total, all countries or areas 2010 0 1 1 1 Total, all countries or areas 2010 2 1 Total, all countries or areas 2010 1 Total, all countries or areas 3 2010 1 Total, all countries or areas 4 2010 Series Value Footnotes \ Population mid-year estimates (millions) 6985.60 NaN 0 1 Population mid-year estimates for males (milli... 3514.41 NaN 3471.20 2 Population mid-year estimates for females (mil... NaN 3 Sex ratio (males per 100 females) 101.20 NaN 4 Population aged 0 to 14 years old (percentage) 27.10 NaN Source 0 United Nations Population Division, New York, ... 1 United Nations Population Division, New York, ... 2 United Nations Population Division, New York, ... 3 United Nations Population Division, New York, ... 4 United Nations Population Division, New York, ... [106]: # print the last 5 rows, to see if the bottom looks ok un_table.tail() [106]: Region ID Region Year \ Zimbabwe 7868 2022 716 7869 716 Zimbabwe 2022 7870 716 Zimbabwe 2022 7871 716 Zimbabwe 2022 7872 716 Zimbabwe 2022 Series Value \ 7868 Population mid-year estimates for females (mil... 8.61 Sex ratio (males per 100 females) 7869 89.40 7870 Population aged 0 to 14 years old (percentage) 40.60 7871 Population aged 60+ years old (percentage) 4.80 Population density 42.20 7872 Footnotes \ 7868 Projected estimate (medium fertility variant). 7869 Projected estimate (medium fertility variant). 7870 Projected estimate (medium fertility variant). 7871 Projected estimate (medium fertility variant). 7872 Projected estimate (medium fertility variant).

7868 United Nations Population Division, New York, ...
7869 United Nations Population Division, New York, ...
7870 United Nations Population Division, New York, ...
7871 United Nations Population Division, New York, ...
7872 United Nations Population Division, New York, ...

[107]: # check types of columns; strings are imported as object, which is expected un_table.dtypes

[107]:	Region ID	int64
	Region	object
	Year	int64
	Series	object
	Value	float64
	Footnotes	object
	Source	object
	dtype: objec	t

- Each country has data for several years.
- There are several values per country and year, e.g. total population, the number of men and women, sizes of three age groups.

Source

• The first part of the table contains various continents and regions, later individual countries arranged alphabetically from 'Afghanistan' to 'Zimbabwe'.

1.3.1 A simple table with total population across years

We will create a simpler table country_pop.

- It will contain only countries, not regions.
- It will contain only rows with total population, all available years.
- It will contain columns Country (originally Region) ,Year, and Population (originally Value).

```
[108]: # get all rows for Afghanistan, choose the label for the first of them
first_country = un_table.query('Region == "Afghanistan"').index[0]
# get all rows from the first Afghanistan onwards and all columns
un_countries = un_table.iloc[first_country:, :]
# get only rows with total population and select only some columns using loc
country_pop = (un_countries
                .query('Series=="Population mid-year estimates (millions)"')
                .loc[:, ['Region', 'Year', 'Value']]
                    .rename(columns={'Value':'Population', 'Region':'Country'}))
# print the start of the result
country_pop.head()
```

[108]:		Country	Year	Population
	930	Afghanistan	2010	28.19
	937	Afghanistan	2015	33.75
	945	Afghanistan	2020	38.97
	953	Afghanistan	2022	41.13
	960	Albania	2010	2.91

1.4 Tidy data, wide and long tables

- The original UN table has in column Value various values, including population size, sex ratio, population density, etc.
- In general, one column of a table should contain values of the same type.
- This is true in our country_pop table with columns Country, Year, and Population.
- This type of table is called **long** and is usually preferable.
- For some analysis, we may want to have countries as rows and years as columns; this is called a **wide table**.
- Pandas has methods to convert between the two formats, e.g. wide_to_long, melt, pivot, unstack etc.
- See the article Tidy data by Hadley Wickham for a longer discussion.

1.5 Back to example: comparing populations in 2010 and 2022

- We select only two years from country_pop.
- Function pivot will use the column Country as the row index, values from column Year as new column names and values from column Population as values to populate the table itself.
- Finally we rename the columns so that they are strings starting with a letter; otherwise they are harder to be used in query.

```
[109]: display(Markdown("**Original `country_pop` table:**"), country_pop.head())
```

pop = (country_pop.query("Year==2010 or Year==2022")
 .pivot(index='Country', columns=['Year'], values='Population')
 .rename(columns={2010:'pop2010', 2022:'pop2022'}))

display(Markdown("**New `pop` table:**"), pop.head())

Original country_pop table:

Country	Year	Population
Afghanistan	2010	28.19
Afghanistan	2015	33.75
Afghanistan	2020	38.97
Afghanistan	2022	41.13
Albania	2010	2.91
	Country Afghanistan Afghanistan Afghanistan Afghanistan Albania	Country Year Afghanistan 2010 Afghanistan 2015 Afghanistan 2020 Afghanistan 2022 Albania 2010

New pop table:

Year	pop2010	pop2022
Country		
Afghanistan	28.19	41.13
Albania	2.91	2.84
Algeria	35.86	44.90
American Samoa	0.05	0.04
Andorra	0.07	0.08

[110]: # compute the difference between years for each country (positive = increase)
pop['difference'] = pop['pop2022'] - pop['pop2010']
relative difference, as a fraction of population in 2010
(value 1 means 100% increase)
pop['relDifference'] = pop['difference'] / pop['pop2010']
pop.head()

[110]:	Year	pop2010	pop2022	difference	relDifference
	Country				
	Afghanistan	28.19	41.13	12.94	0.459028
	Albania	2.91	2.84	-0.07	-0.024055
	Algeria	35.86	44.90	9.04	0.252091
	American Samoa	0.05	0.04	-0.01	-0.200000
	Andorra	0.07	0.08	0.01	0.142857

Now we will use this table to create some plots and tables.

- What can you observe from these data displays?
- Are some of these visualizations more useful than others or are they complementary? How could we improve them?
- What other questions you could ask about this table and how would you answer them using plots or tables?

```
[111]: figure, axes = plt.subplots()
    axes.plot(pop.pop2010, pop.pop2022, '.')
    axes.set_aspect('equal')
    axes.set_xlabel('Population in 2010')
    axes.set_ylabel('Population in 2022')
    pass
```



```
[112]: figure, axes = plt.subplots()
axes.axhline(0, color="lightgrey")
axes.plot(pop.pop2010, pop.difference, '.')
axes.set_xlabel('Population in 2010')
axes.set_ylabel('Change from 2010 to 2022')
pass
```


[113]: figure, axes = plt.subplots()
 axes.axhline(0, color="lightgrey")
 axes.plot(pop.pop2010, pop.relDifference, '.')
 axes.set_xlabel('Population in 2010')
 axes.set_ylabel('Rel. change from 2010 to 2022')
 pass

<pre>pop.sort_values('relDifference').head(10)</pre>					
: Year Country	pop2010	pop2022	difference	relDifference	
Saint Martin (French part)	0.04	0.03	-0.01	-0.250000	
American Samoa	0.05	0.04	-0.01	-0.200000	
Marshall Islands	0.05	0.04	-0.01	-0.200000	
Bosnia and Herzegovina	3.81	3.23	-0.58	-0.152231	
Ukraine	45.68	39.70	-5.98	-0.130911	
Puerto Rico	3.72	3.25	-0.47	-0.126344	
Lithuania	3.14	2.75	-0.39	-0.124204	
Latvia	2.10	1.85	-0.25	-0.119048	
Republic of Moldova	3.68	3.27	-0.41	-0.111413	
Bulgaria	7.59	6.78	-0.81	-0.106719	

[115]: pop.sort_values('relDifference', ascending=False).head(10)

[115]:	Year	pop2010	pop2022	difference	relDifference
	Country				
	Anguilla	0.01	0.02	0.01	1.000000

Turks and Caicos Islands	0.03	0.05	0.02	0.666667
Jordan	6.93	11.29	4.36	0.629149
Oman	2.88	4.58	1.70	0.590278
Qatar	1.71	2.70	0.99	0.578947
Niger	16.65	26.21	9.56	0.574174
Mayotte	0.21	0.33	0.12	0.571429
Equatorial Guinea	1.09	1.67	0.58	0.532110
Angola	23.36	35.59	12.23	0.523545
Bonaire, St. Eustatius & Saba	0.02	0.03	0.01	0.500000

[116]: neighbor_countries =

```
    Gisplay(neighbors)
    Gisplay(nei
```

Year	pop2010	pop2022	difference	relDifference
Country				
Slovakia	5.40	5.64	0.24	0.044444
Czechia	10.46	10.49	0.03	0.002868
Hungary	9.99	9.97	-0.02	-0.002002
Poland	38.60	39.86	1.26	0.032642
Austria	8.36	8.94	0.58	0.069378
Ukraine	45.68	39.70	-5.98	-0.130911

1.6 Summary and outlook

- We will work mostly with tabular data.
- We will store them in DataFrame from Pandas library.
- This is more convenient and more efficient than regular Python lists.
- We have seen several functions for basic manipulation:
 - iloc[], loc[], query, head, set_index, reset_index, rename, pivot, copy, sort_values, operations and functions on Series.
- Next lecture will be focused on examples of different chart types.
- More Pandas later.

Lecture 3a Overview of Plot Types

Data visualization · 1-DAV-105 Lecture by Broňa Brejová

Plan for today

- Types of variables (columns)
- Gallery of different plot types, some discussion of their properties
- Some notes on how to draw them in Python (more in a notebook)

Types of variables (columns)

Categorical / qualitative

- **Nominal:** values have no fixed ordering (for example, gender, country, color)
- **Ordinal:** values are ordered (for example education level primary / secondary / university; star ranking 0-5)

Numerical / quantitative

- **Discrete:** typically counts
- **Continuous:** typically measurements

Types of variables (columns)

Numerical / quantitative

- **Discrete:** typically counts
- **Continuous:** typically measurements

Numerical variables also categorized as follows:

- **Ratio (pomerová):** if zero means "none", and it is meaningful to compute ratios / percentages (mass, length, duration, cost, ...)
- Interval: does not have "true zero", we can subtract but not make ratios (temperature in degrees C, date)

Data for today

- Various country indicators downloaded from the World Bank for years 2000, 2010, 2020
- Population, area, GDP per capita, life expectancy, fertility (number of children per woman)
- Also classification into regions and income groups
- Which are categorical / numerical?

We will also use Gapminder life expectancy 1990-2021 from I01

Scatter plot (bodový graf)

Good for two numerical variables (x and y).

In this plot, many points near left boundary, most space empty.

Solution 1: combine overall view and detail

Solution 2: log scale

Log-scale x-axis: draw at log(x) instead of x, but axis ticks show values of x

Adding a categorical variable with color

- Europe & Central Asia
- Middle East & North Africa
- East Asia & Pacific
- Sub-Saharan Africa
- Latin America & Caribbean
- North America

Adding a numerical variable with color scale

Adding numerical variable with marker size

Variable value should be proportional to circle area, not diameter!

Adding categorical variable with marker shape

Hard to read, particularly for many data points Showing population change between 2000 and 2020 If less than 1% change, marked as equal

Line graph (čiarový graf)

Emphasizing continuity between data points Data points can be also shown as markers

Adding categorical variable with color

Area graph (plošný graf)

Life expectancy in Slovakia and France

Y-axis must start at 0

Emphasizes differences more than line graph, but also more cluttered

Line graph with many lines

Hard to follow individual lines, but shows general trends and comparisons. Countries with names Si..Sw, and having population at least 1 million. Note that colors start to repeat.

Small multiples

A small plot for each value of a categorical variable

Must have the same axes!

Exact comparison difficult, but it is possible to notice different trends

Bar graph (stĺpcový/pruhový graf)

X-axis is categorical

Y-axis must start at 0

Bar graph with sorted columns

Bar graph with colored columns

Bar graphs can be horizontal

Dot plot

As bar graph but only dots shown at the top of the bar

Less clutter

X-axis does not need to start at 0 - better use of space

Can use multiple colors

Heatmap

Both axes categorical

Numerical value shown in a color scale

Compact display, but color scales harder to read

Pie chart (koláčový graf)

Obvious that percentages displayed Very large values are easy to see (here high income) Hard to compare similar values to each other Space use not good

Pie chart with values labeled

Easier to compare but still not ideal Labeling values also useful in other types of graphs

Stacked (skladaný) bar graph instead of pie chart

Rectangles easier to compare than wedges Benefits from labeled values Middle colors hard to compare across bars Similar idea: stacked area plot (change in percentages over time)

Colored bar graph instead of pie chart

Easy to compare East Asia vs whole world. Not obvious that we show parts of a whole.

Colored bar graph instead of pie chart

Easy to compare income groups within region

	South Asia	1940 - A. M. C.
Strip plot	Europe & Central Asia	
One axis categorical	Middle East & North Africa	the set of
Other axis shows individual data points	East Asia & Pacific	the state of the second
Jitter added in categorical axis to avoid	Sub-Saharan Africa	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
point overlap	Latin America & Caribbean	eane.
	North America	2000 - C
		2.5 5.0

J

Fertility in 2020
Histogram

For 1D numerical data

Split values into bins, show bin sizes as bar graph

We could use colors to display 2 or more histograms

Parallel coordinates

Good for multidimensional numerical data

Each column one dimension

Here scaled as % of maximum value

Hard to see individual lines, but can show trends, compare groups shown in color or selected data point vs others

Parallel categories

Good for multidimensional categorical data

Each column one dimension

The widths of ribbons correspond to the number of countries

Radar chart (radarový graf)

Hard-to-read version of parallel coordinates

Perhaps some justification in cyclical domains, such as average temperature in months of a year

Now some Python

Overview of libraries

- Matplotlib
- Seaborn: an extension of Matplotlib, convenient for many types of plots
- Plotly: basic usage similar to Seaborn, plots interactive by default

Part of the main table countries

	IS03	Region	Income Group	Population2000	Population2010	Population2020	Area	GDP2000	GDP2010
Country									
Afghanistan	AFG	South Asia	Low income	19542983.0	28189672.0	38972231.0	652860.0	NaN	562.499219
Albania	ALB	Europe & Central Asia	Upper middle income	3089026.0	2913021.0	2837849.0	28750.0	1126.683340	4094.349686
Algeria	DZA	Middle East & North Africa	Lower middle income	30774621.0	35856344.0	43451666.0	2381741.0	1780.376063	4495.921476
American Samoa	ASM	East Asia & Pacific	High income	58229.0	54849.0	46189.0	200.0	NaN	10446.863206
Andorra	AND	Europe & Central Asia	High income	66097.0	71519.0	77699.0	470.0	21620.465102	48237.890541

```
# create plot using Seaborn
axes = sns.scatterplot(data=countries, x='GDP2020', y='Expectancy2020',
                         hue='Region')
# set plot properties using methods from Matplotlib
axes.set xlabel('GDP per capita (US dollars), logscale')
axes.set ylabel('Life expectancy (years)')
axes.set title('Country indicators 2020')
axes.semilogx()
# place legend outside the plot:
axes.legend(bbox to anchor=(1.05, 1), loc=2)
                                                         Country indicators 2020
pass
                                                                        South Asia
                                                   85
```


Region

- South Asia
- Europe & Central Asia
- Middle East & North Africa
- East Asia & Pacific
- Sub-Saharan Africa
- Latin America & Caribbear
- North America


```
x='GDP2020', y='Expectancy2020', hue='Region',
style=diff_class, s=100,
markers={'increase':'^', 'decrease':'v', 'same':'.'})
```


display(life_exp_years)

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 ... 2

Country

Afghanistan	29.4	29.5	29.5	29.6	29.7	29.7	29.8	29.9	29.9	30.0	
Albania	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	
Algeria	30.2	30.3	30.4	31.4	25.4	28.1	29.6	29.5	29.5	31.0	
Angola	29.0	29.1	29.2	29.3	29.3	29.4	29.4	29.5	29.6	29.7	
Antigua and Barbuda	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	

```
# list of numerical years from column names
years = [int(x) for x in life exp years.columns]
figure, axes = plt.subplots()
# plot two lines
axes.plot(years, life exp years.loc['Slovak Republic'], label='Slovakia')
axes.plot(years, life exp years.loc['France'], label='France')
# plot settings
axes.set xlabel('Year')
axes.set ylabel('Life expectancy (years)')
axes.set title('Life expectancy in Slovakia and France')
axes.legend()
                                                                    Life expectancy in Slovakia and France
                                                                  Slovakia
                                                                  France
pass
                                                               70
                                                              (years)
                                                              expectancy
09
09
```

1900

1920

1940

1960 Year 1980

2000

2020

```
figure, axes = plt.subplots()
# two filled areas, the second is semi-transparent
axes.fill_between(years, 0, life_exp_years.loc['Slovak Republic'], label='Slovakia')
axes.fill_between(years, 0, life_exp_years.loc['France'], label='France', alpha=0.5)
# plot settings as before...
```



```
# Lines for many countries easy in Seaborn
# ... works better with long table
life_exp_sel_long = (
    life_exp_sel.reset_index()
    .melt(id_vars=['Country'])
    .rename(columns={'variable':'Year', 'value':'Expectancy'})
    .astype({'Year':'int32'})
    Country Year Expectancy
```

display(life_exp_sel_long)

	Country	Year	Expectancy
0	Sierra Leone	1900	27.400000
1	Singapore	1900	34.200000
2	Slovak Republic	1900	37.900000
3	Slovenia	1900	36.400000
4	Somalia	1900	31.200000
1581	Sri Lanka	2021	76.399000
1582	Sudan	2021	65.267000
1583	Sweden	2021	83.156098
1584	Switzerland	2021	83.851220
1585	Syria	2021	72.063000

grid.set_axis_labels('Year', 'Life expectancy (years)')
grid.set_titles("{col_name}") # title of each plot will be country name


```
def rotate_bar_labels(axes, angle=45):
    """Auxiliary function for rotating bar plot labels by 45 degrees"""
    axes.tick_params(axis='x', labelrotation=angle, pad=-5)
    plt.setp(axes.get_xticklabels(), ha='right')
```

sorting

display(life exp sel wide)

axes = sns.heatmap(data=life_exp_sel_wide, square=True, cmap="Yl0rBr")

Year	2000	2005	2010	2015	2020
Country					
Singapore	79.3	81.1	83.2	84.4	84.465854
Switzerland	80.1	81.5	82.5	83.5	83.000000
Sweden	79.8	80.6	81.5	82.2	82.356098
Spain	79.4	80.5	82.0	82.6	82.331707
Slovenia	76.0	77.7	79.5	80.8	80.531707
Slovak Republic	73.5	74.3	75.6	76.7	76.865854

1 Lecture 3b: Source code for plots from Lecture 3a + introduction to Seaborn and Plotly libraries

Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

This notebook contains the source code for all the plots shown in the first part of the lecture. In also introduces two new plotting libraries: Seaborn and Plotly.

1.1 Seaborn library

- Seaborn library is an extension of Matplotlib.
- Seaborn is more convenient for many types of plots; we will use it for more complex scatter plots and line plots, for bar plots, strip plots, histograms and heatmaps.
- In Seaborn functions, a whole DataFrame can be added using option data=. DataFrame column names are then used as x, y, hue (color), col (one of subfigures).
- Seaborn creates Matplotlib objects (e.g. figure, axes) which can be then modified using Matplotlib methods.
- The first example of this library is in section Categorical variable via color

1.2 Plotly library for interactive plots

- Another popular library is Plotly.
- It provides some additional plot types and all plots are interactive.
- For example, in the scatter plot, we can find information about each dot by hovering a mouse over it.
- We can also zoom into parts of the plot by selecting a rectangle.
- A menu with additional options appears in the top right corner of the plot.
- Plotly is also used the first time in section Categorical variable via color.

1.3 Used libraries

```
[1]: import numpy as np
import pandas as pd
from IPython.display import Markdown
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
```

1.4 Importing World Bank data

Country indicators from World Bank,
https://databank.worldbank.org/home under CC BY 4.0 license.

Country population, surface area in km squared, GDP per capita (current US\$), life expectancy at birth (years), fertility rate (births per woman); in years 2000, 2010, 2020.

[2]:	<pre>url = 'https://bbrejova.github.io/viz/data/World_bank.csv'</pre>
	<pre>countries = pd.read_csv(url).set_index('Country')</pre>
	display(countries)

	ISO3				Reg	ion		Income	e Group	\	
Country					-				-		
Afghanistan	AFG			Sout	th A	sia		Low	income		
Albania	ALB	Eur	ope 8	k Centra	al A	sia	Upper	middle	income		
Algeria	DZA Mic	dle E	last 8	& North	Afr	rica	Lower	middle	income		
American Samoa	ASM	E	last <i>l</i>	Asia & B	Paci	fic		High	income		
Andorra	AND	Eur	ope 8	k Centra	al A	sia		High	income		
	••		-		••			•••			
Virgin Islands	VIR La	atin A	merio	ca & Car	ribb	ean		High	income		
West Bank and Gaza	PSE Mic	dle E	last 8	k North	Afr	ica	Upper	middle	income		
Yemen	YEM Mic	dle E	last 8	k North	Afr	ica		Low	income		
Zambia	ZMB		Sub-S	Saharan	Afr	ica	Lower	middle	income		
Zimbabwe	ZWE		Sub-S	Saharan	Afr	ica	Lower	middle	income		
	Populati	ion200	0 Pc	opulatio	on20	10	Popula [.]	tion2020	C	Area	\
Country	-			-			•				
Afghanistan	1954	12983.	0	28189	9672	2.0	38	972231.0	0 6528	360.0	
Albania	308	39026.	0	2913	3021	.0	2	337849.0	287	750.0	
Algeria	3077	74621.	0	35856	5344	.0	434	451666.0	23817	741.0	
American Samoa	Ę	58229.	0	54	4849	0.0		46189.0) 2	200.0	
Andorra	6	6097.	0	7:	1519	0.0		77699.0) 4	170.0	
•••											
Virgin Islands	10)8642.	0	108	3356	5.0		106291.0) 3	350.0	
West Bank and Gaza	292	22153.	0	3786	5161	.0	43	303269.0	0 60	020.0	
Yemen	1862	28701.	0	24743	3945	.0	32	284046.0	5279	970.0	
Zambia	989	91135.	0	13792	2087	.0	18	927715.0	0 7526	310.0	
Zimbabwe	1183	34676.	0	12839	9770	0.0	15	669667.0	3907	760.0	
	GDF	2000		GDP20	10		GDP20	20 Exp	ectancy2	2000	\
Country								-	v		
Afghanistan		NaN	56	52.4992	19	51	2.0550	98	55.298	3000	
Albania	1126.68	33340	409	94.34968	36	534	3.0377	04	75.404	1000	
Algeria	1780.37	76063	449	95.9214	76	335	4.1531	64	70.478	3000	
American Samoa		NaN	1044	46.86320	06	1560	9.7772	20		NaN	
Andorra	21620.46	55102	4823	37.89054	11	3720	7.2388	71		NaN	
•••	••	•									
Virgin Islands		NaN	3990	05.1284	18	3941	1.0452	54	76.619	9512	
West Bank and Gaza	1476.17	71850	255	57.07562	24	323	3.5686	38	70.388	3000	
Yemen	519.59	91639	124	49.06308	35	57	8.5120	10	62.588	3000	
Zambia	364.02	26145	146	59.3614	50	95	6.8317	29	45.231	1000	
Zimbabwe	565.28	34390	93	37.84034	40	137	2.6966	74	44.686	3000	

Expectancy2010 Expectancy2020 Fertility2000 $\$

Country			
Afghanistan	60.851000	62.575000	7.534
Albania	77.936000	76.989000	2.231
Algeria	73.808000	74.453000	2.566
American Samoa	NaN	NaN	NaN
Andorra	NaN	NaN	NaN
•••	•••	•••	•••
Virgin Islands	77.865854	79.819512	2.060
West Bank and Gaza	73.004000	74.403000	5.443
Yemen	67.280000	64.650000	6.318
Zambia	56.799000	62.380000	5.926
Zimbabwe	50.652000	61.124000	3.974
	Fertility2010	Fertility2020	
Country			
Afghanistan	6.099	4.750	
-			
Albania	1.656	1.400	
Albania Algeria	1.656 2.843	1.400 2.942	
Albania Algeria American Samoa	1.656 2.843 NaN	1.400 2.942 NaN	
Albania Algeria American Samoa Andorra	1.656 2.843 NaN 1.270	1.400 2.942 NaN NaN	
Albania Algeria American Samoa Andorra 	1.656 2.843 NaN 1.270 	1.400 2.942 NaN NaN	
Albania Algeria American Samoa Andorra Virgin Islands	1.656 2.843 NaN 1.270 2.300	1.400 2.942 NaN NaN 2.030	
Albania Algeria American Samoa Andorra Virgin Islands West Bank and Gaza	1.656 2.843 NaN 1.270 2.300 4.383	1.400 2.942 NaN NaN 2.030 3.570	
Albania Algeria American Samoa Andorra Virgin Islands West Bank and Gaza Yemen	1.656 2.843 NaN 1.270 2.300 4.383 4.855	1.400 2.942 NaN MaN 2.030 3.570 3.886	
Albania Algeria American Samoa Andorra Virgin Islands West Bank and Gaza Yemen Zambia	1.656 2.843 NaN 1.270 2.300 4.383 4.855 5.363	1.400 2.942 NaN 2.030 3.570 3.886 4.379	
Albania Algeria American Samoa Andorra Virgin Islands West Bank and Gaza Yemen Zambia Zimbabwe	1.656 2.843 NaN 1.270 2.300 4.383 4.855 5.363 4.025	1.400 2.942 NaN NaN 2.030 3.570 3.886 4.379 3.545	

[217 rows x 16 columns]

1.5 A simple scatterplot

To create a simple scatterplot, commands from the previous lectures suffice. Note that we divide GDP by 1000 and add this information to the axis title. This makes the axis easier to read.

```
[3]: figure, axes = plt.subplots()
```

```
axes.plot(countries.GDP2020 / 1000, countries.Expectancy2020, '.')
axes.set_xlabel('GDP per capita (thousands US dollars)')
axes.set_ylabel('Life expectancy (years)')
axes.set_title('Country indicators 2020')
pass
```


1.6 Zooming in

Limits on x axis are set using set_xlim method in order to zoom in on countries with lower GDP.

```
[4]: # create two subplots
figure, axes = plt.subplots(1, 2, figsize=(10, 5), sharey=True)
# the left subplot - full range of data
axes[0].plot(countries.GDP2020 / 1000, countries.Expectancy2020, '.')
axes[0].set_xlabel('GDP per capita (thousands US dollars)')
axes[0].set_ylabel('Life expectancy (years)')
axes[0].set_title('Country indicators 2020')
# the right subplot - smaller values of GDP
axes[1].plot(countries.GDP2020 / 1000, countries.Expectancy2020, '.')
axes[1].set_xlabel('GDP per capita (thousands US dollars)')
axes[1].set_xlabel('GDP per capita (thousands US dollars)')
axes[1].set_ylabel('Life expectancy (years)')
axes[1].set_title('Only GDP per capita < 25000 USD')
axes[1].set_xlim(0, 25)
pass</pre>
```


1.7 Log-scale plot

In this plot, the log-scale on the x-axis is switched on by semilogx method; similarly there is semilogy for the y-axis and loglog for both axes.

```
[5]: figure, axes = plt.subplots(1, 2, figsize=(10, 5))
# linear scale plot
axes[0].plot(countries.GDP2020 / 1000, countries.Expectancy2020, '.')
axes[0].set_xlabel('GDP per capita (thousands US dollars)')
axes[0].set_ylabel('Life expectancy (years)')
axes[0].set_title('Country indicators 2020')
# log scale plot
axes[1].plot(countries.GDP2020, countries.Expectancy2020, '.')
axes[1].set_xlabel('GDP per capita (US dollars), logscale')
axes[1].set_ylabel('Life expectancy (years)')
axes[1].set_title('Country indicators 2020')
axes[1].set_title('Country indicators 2020')
axes[1].set_stabel('Life expectancy (years)')
axes[1].set_title('Country indicators 2020')
```


1.8 Categorical variable via color

Here we color countries by their region. Seaborn function scatterplot can do this easily via hue parameter. This function returns Matplotlib axes which can be then modified by familiar methods such as set_xlabel.

- The same plot in Plotly is even easier and interactive.
- Both Plotly and Seaborn automatically label axes with column names, such as GDP2020.
- Here we override such automated labels with longer ones using a dictionary fig_labels.

```
hover_data=['Country'], log_x=True,
labels = fig_labels)
fig.show()
```

1.9 Numerical variable via color

Seaborn automatically detects if the column used as hue is a categorical or numerical variable. In the previous graph, regions were used as hue and Seaborn chose a color palette with a different color for each category. Here we have a numerical variable so a continuous palette with different shades of pink and purple is used by default. We will discuss color palettes later in the course.

1.10 Numerical variable as point size

We will now use the population of each country as the size of each point (also called bubble), and we will color countries by regions. Sizing points according to the values in a specified table column is again simple to do in Seaborn using paremeter size in sns.scatterplot. Parameter sizes sets the minimum and maximum point size to be used. For simplicity, population in millions is added as a new column to countries.

1.11 Categorical variable as marker type

- We add a new column named Population change with categories increase, decrease and same depedning on how the population of a country changed between 2010 and 2020. Category same is applied to countries with population change less then 1% in either direction.
- This column is created using apply command, which applies a function (here a lambda expression) to diff Series containing relative change in population.
- This column is then used as argument style in sns.scatterplot. Size of markers is set to 100 (more than default) by argument s. Particular markers are selected by markers argument.
- Note that in the scatterplot we use both columns of countries table and separate Series.

1.12 Importing Gapminder life expectancy

We import life expectancy data provided free by the Gapminder foundation under the CC-BY license. The data set gives for each year and each country an estimate of how may years would newborn babies live on average if the trends in mortality of different age groups that were prevailing in the year of their birth would prevail through their entire life.

```
[11]: url="https://bbrejova.github.io/viz/data/life_expectancy_years.csv"
    life_exp = pd.read_csv(url, index_col=0)
    life_exp_years = life_exp.iloc[:, 1:]
    display(life_exp)
```

	ISO3	1900	1901	1902	1903	1904	1905	1906	1907	\
Country										
Afghanistan	AFG	29.4	29.5	29.5	29.6	29.7	29.7	29.8	29.9	
Albania	ALB	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	
Algeria	DZA	30.2	30.3	30.4	31.4	25.4	28.1	29.6	29.5	
Angola	AGO	29.0	29.1	29.2	29.3	29.3	29.4	29.4	29.5	
Antigua and Barbuda	ATG	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	
Venezuela	VEN	32.4	32.4	32.4	32.4	32.4	32.4	32.5	32.5	
Vietnam	VNM	31.2	31.1	31.1	31.1	31.1	31.0	31.0	31.0	

Yemen	YEM	23.	5 23.	5 23.	5 23.	.5 23.	5 23.	6 23.	6 23.6	
Zambia	ZMB	33.	6 33.	6 33.	6 33.	.7 33.	7 33.	8 33.	8 33.8	
Zimbabwe	ZWE	34.	1 34.	1 34.	1 34.	.1 34.	1 34.	1 34.	1 34.1	
	1908		2012	2013	2014	2015	2016	2017	2018	١
Country										
Afghanistan	29.9	•••	60.8	61.3	61.2	61.2	61.2	63.4	63.081	
Albania	35.4		77.8	77.9	77.9	78.0	78.1	78.2	79.184	
Algeria	29.5		76.8	76.9	77.0	77.1	77.4	77.7	76.066	
Angola	29.6		61.3	61.9	62.8	63.3	63.8	64.2	62.144	
Antigua and Barbuda	33.8		76.7	76.8	76.8	76.9	77.0	77.0	78.511	
•••					•••	•••	•••			
Venezuela	32.5	•••	75.2	75.2	75.0	75.0	75.3	75.3	71.979	
Vietnam	30.9	•••	73.8	74.0	74.1	74.3	74.4	74.5	73.976	
Yemen	23.6		68.3	68.9	69.0	68.6	68.1	68.1	64.575	
Zambia	33.9		58.8	60.0	61.1	62.0	62.8	63.2	62.342	
Zimbabwe	34.2	•••	54.9	56.8	58.5	59.6	60.5	61.4	61.414	
	20	19	2020	20	21					
Country										
Afghanistan	63.50	65	62.575	61.9	82					
Albania	79.28	32	76.989	76.4	63					
Algeria	76.4	74	74.453	76.3	77					
Angola	62.44	18	62.261	61.6	43					
Antigua and Barbuda	78.69	91	78.841	78.4	97					
	•••	••								
Venezuela	72.1	51	71.095	70.5	54					
Vietnam	74.09	93	75.378	73.6	18					
Yemen	65.09	92	64.650	63.7	53					
Zambia	62.79	93	62.380	61.2	23					
Zimbabwe	61.29	92	61.124	59.2	53					

[184 rows x 123 columns]

1.13 A simple line graph

Here we use **plot** from matplotlib to plot life expectancy over the years for Slovakia. Years are column names which need to be converted from string to integer using Python list comprehension.

[12]: # list of numerical years from column names years = [int(x) for x in life_exp_years.columns] # simple plot for one row of the table figure, axes = plt.subplots() axes.plot(years, life_exp_years.loc['Slovak Republic']) # plot settings axes.set_xlabel('Year') axes.set_ylabel('Life expectancy (years)') axes.set_title('Life expectancy in Slovakia')

1.14 A line graph with multiple lines

Here we plot two lines, each by a separate call to plot. Each line has a label to show in the legend.

```
[13]: figure, axes = plt.subplots()
# plot two lines
axes.plot(years, life_exp_years.loc['Slovak Republic'], label='Slovakia')
axes.plot(years, life_exp_years.loc['France'], label='France')
# plot settings
axes.set_xlabel('Year')
axes.set_ylabel('Life expectancy (years)')
axes.set_title('Life expectancy in Slovakia and France')
axes.legend()
pass
```

pass

1.15 Area graph

Here we fill in the area between x-axis (value 0) and a table row using fill_between method. France is plotted on top and is set to be semi-transparent using alpha=0.5.

1.16 Line graph with many lines

- Here we want to plot lines for all countries alphabetically between Si and Sz and having at least million inhabitants.
- First we select such countries from countries to table selection.
- Using intersection, we get only countries from our selection that are also in Gapminder table (life_exp).
- Part of the Gapminder table for these coutnries is then stored as life_exp_sel.

	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	١
Country											
Sierra Leone	27.4	27.5	27.5	27.6	27.7	27.8	27.9	27.9	28.0	28.1	
Singapore	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2	
Slovak Republic	37.9	38.2	38.5	38.8	39.1	39.4	39.7	40.0	40.3	40.6	
Slovenia	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4	
Somalia	31.2	31.2	31.3	31.4	31.4	31.5	31.5	31.6	31.7	31.7	
South Africa	34.5	34.5	34.5	34.6	34.6	34.6	34.6	34.7	34.7	34.8	
South Sudan	29.6	29.6	29.8	29.8	29.9	30.0	30.1	30.2	30.3	30.4	
Spain	34.7	35.6	36.4	37.2	38.0	38.9	39.7	40.5	41.4	41.0	
Sri Lanka	32.5	32.5	32.5	33.9	34.7	32.4	26.9	30.0	30.4	29.8	
Sudan	31.5	31.5	31.5	31.5	31.5	31.5	31.5	31.5	31.5	31.5	
Sweden	52.3	52.9	54.7	55.1	55.4	54.5	56.7	57.0	56.4	58.4	
Switzerland	47.5	49.0	50.5	50.1	49.2	49.7	50.8	51.3	52.3	51.7	
Syria	31.8	31.8	31.9	31.9	31.9	31.9	31.9	32.0	32.0	32.0	

		2012	2013	2014	2015	2016	2017	2018	\
Country									
Sierra Leone		56.9	57.9	57.1	58.5	59.8	60.4	59.796000	
Singapore		83.6	83.9	84.2	84.4	84.7	84.8	83.297561	
Slovak Republic		76.2	76.6	76.8	76.7	77.2	77.4	77.265854	
Slovenia		79.9	80.2	80.9	80.8	81.0	81.1	81.378049	
Somalia		56.8	57.4	57.9	58.3	58.5	58.5	56.375000	
South Africa		59.5	61.1	62.5	63.4	64.4	66.3	65.674000	
South Sudan		58.2	58.0	58.3	59.4	59.4	59.3	55.950000	
Spain		82.3	82.6	82.7	82.6	82.9	83.1	83.431707	
Sri Lanka		76.1	76.4	76.5	76.9	77.2	77.5	75.748000	
Sudan		68.4	68.7	69.1	69.6	69.8	70.3	65.681000	
Sweden		81.8	81.9	82.1	82.2	82.4	82.5	82.558537	
Switzerland		82.9	83.0	83.3	83.5	83.8	84.0	83.753659	
Syria		67.9	68.7	65.0	67.3	67.4	69.8	70.145000	
		201	9	2020		2021			
Country									
Sierra Leone	60	.25500	0 59.	763000	60.0	62000			
Singapore	83	.59512	2 84.	465854	83.4	41463			
Slovak Republic	77	.66585	4 76.	865854	74.7	14634			
Slovenia	81	.52926	8 80.	531707	80.8	75610			
Somalia	57	.07800	0 55.	967000	55.2	80000			
South Africa	66	.17500	0 65.	252000	62.3	41000			
South Sudan	55	.91200	0 55.	480000	54.9	75000			
Spain	83	.83170	7 82.	331707	83.1	78049			
Sri Lanka	76	.00800	0 76.	393000	76.3	99000			
Sudan	65	.87600	0 65.	614000	65.2	67000			
Sweden	83	.10975	6 82.	356098	83.1	56098			
Switzerland	83	.90487	8 83.	000000	83.8	51220			
Syria	71	.82200	0 72.	140000	72.0	63000			

[13 rows x 122 columns]

- In Matplotlib, each country from life_exp_sel is plotted separately in a for-loop, similarly as for two countries above.
- Note that colors repeat because the default palette is not large enough.

```
[16]: figure, axes = plt.subplots()
# loop over countries
for country in life_exp_sel.index:
    axes.plot(years, life_exp_sel.loc[country], label=country)
# plot settings
axes.set_xlabel('Year')
axes.set_ylabel('Life expectancy (years)')
axes.set_title('Life expectancy in selected countries')
```

```
axes.legend(bbox_to_anchor=(1.05, 1), loc=2)
pass
```


- To use Seaborn for the same plot, it is better to change life_exp_sel table from wide to long format using melt method. Year is converted from strings to integers.
- This creates a table with columns Country, Year, Expectancy.

```
[17]: life_exp_sel_long = (
    life_exp_sel.reset_index()
    .melt(id_vars=['Country'])
    .rename(columns={'variable':'Year', 'value':'Expectancy'})
    .astype({'Year':'int32'})
    )
    display(life_exp_sel_long)
```

	Country	Year	Expectancy
0	Sierra Leone	1900	27.400000
1	Singapore	1900	34.200000
2	Slovak Republic	1900	37.900000
3	Slovenia	1900	36.400000
4	Somalia	1900	31.200000
•••			•••
1581	Sri Lanka	2021	76.399000
1582	Sudan	2021	65.267000
1583	Sweden	2021	83.156098
1584	Switzerland	2021	83.851220
1585	Syria	2021	72.063000

[1586 rows x 3 columns]

• Now we use Seaborn function relplot, setting parameters x, y and hue to column names in our long table and specifying that we want lineplit using kind="line".

- The function returns FacetGrid, which potentially contains multiple axes, so we ned to use slightly different methods to set labels.
- Seaborn created a sufficiently large color palette but some colors are then hard to distinguish.

1.17 Small multiples

- Small multiples, with each country in our selection as a separate plot, is very easy to do in Seaborn from a long-format table using relplot, using column Country in option col which selects one of subplots for each data point.
- Option col_wrap selects how many subplots will be placed ion one row of the overall figure.

1.18 Bar graph

- We plot a bargraph of life expectancy in our selected countries by Seaborn function barplot.
- All bars are plotted by the same color using setting color="C0".
- We rotate tick labels on the x axes to fit them in the given space.

1.19 Bar graph with sorted columns

Countries are sorted by value in preprocessing, then plotted as before.

1.20 Bar graph with multiple colors

- Now we compare life expectancy in two years in a bargraph with tho colors of columns.
- After selecting appropriate rows of the long table, we use column Year in the hue parameter of barplot.

1.21 Horizontal bar graph

- Longer bar labels are easier to read in a horizontal barplot.
- In Seaborn, it is sufficient to switch x and y arguments.

1.22 Dot plot

- Dot plot shows only the end of each bar as a dot.
- Seaborn's pointplot joins these dots by lines by default, linestyle='none' prevents this.
- Note that in contrast to barplots, the x axis does not start at 0 (we could make it so by set_xlim).

1.23 Heatmap

- The goal is to create heatmap with countries as rows, several years as columns and life expectancy values as colors.
- We first need to create a DataFrame with these values in such an arrangment by selecting rows with appropriate years from our long table and pivoting the table by year to make it wide.
- Finally we sort the table by the expectancy in the last year.

display(life_exp_sel_wide)

Year	2000	2005	2010	2015	2020
Country					
Singapore	79.3	81.1	83.2	84.4	84.465854
Switzerland	80.1	81.5	82.5	83.5	83.000000
Sweden	79.8	80.6	81.5	82.2	82.356098
Spain	79.4	80.5	82.0	82.6	82.331707
Slovenia	76.0	77.7	79.5	80.8	80.531707
Slovak Republic	73.5	74.3	75.6	76.7	76.865854
Sri Lanka	71.6	73.8	74.7	76.9	76.393000
Syria	72.5	75.0	75.8	67.3	72.140000
Sudan	63.4	65.7	67.7	69.6	65.614000
South Africa	55.6	52.0	56.1	63.4	65.252000
Sierra Leone	50.9	52.6	55.4	58.5	59.763000
Somalia	52.5	54.7	55.0	58.3	55.967000
South Sudan	54.4	56.7	57.8	59.4	55.480000

- Heatmap is plotted by **sns.heatmap** function.
- We have used options to set the shape of individual cells to square and change the color palette ('cmap').

[26]: axes = sns.heatmap(data=life_exp_sel_wide, square=True, cmap="YlOrBr")
axes.set_ylabel(None)
pass

1.24 Pie chart

- To prepare data for pie chart, we use two features of Pandas which we will cover in a later lecture: converting the Income Group column to a categorical type and computing the number of countries in various income groups using groupby.
- In this way we create two Series: groups with counts for the whole world and groups_asia for just East Asian countries.

display(groups)

```
Income Group
Low income 26
Lower middle income 54
Upper middle income 54
High income 82
Name: Count, dtype: int64
```

- The plotting is done by the **pie** function from Matplotlib.
- It gets the series with counts as parameter **x** and country names as labels.

```
[28]: figure, axes = plt.subplots(1,2, figsize=(10,5))
axes[0].pie(x=groups, labels=groups.index)
axes[0].set_title('Whole world\n(the number of countries)')
axes[1].pie(x=groups_asia, labels=groups_asia.index)
axes[1].set_title('East Asia & Pacific\n(the number of countries)')
figure.subplots_adjust(wspace=1)
pass
```


1.25 Pie chart with labels

• Labels are added by **autopct** setting in **pie**. This setting provides a formatting string for the values, here we print one decimal place.

```
[29]: figure, axes = plt.subplots(1,2, figsize=(10,5))
    axes[0].pie(x=groups, labels=groups.index, autopct="%.1f%%")
    axes[0].set_title('Whole world\n(number of countries)')
    axes[1].pie(x=groups_asia, labels=groups_asia.index, autopct="%.1f%%")
    axes[1].set_title('East Asia & Pacific\n(number of countries)')
    figure.subplots_adjust(wspace=1)
    pass
```


1.26 Stacked bar graph instead of pie chart

- To prepare data for stacked bar graph, we need to combine our two count Series (groups and groups_asia) to one long table groups_concat.
- This is a DataFrame, because Income Group was moved from index to a column.
- We also add percentage column, which will be used in the plot. Percentage is computed by divided counts with the sum of all counts.
- We also add a column with region name, because we will consider two regions (East Asia and the whole world).

```
[30]: # first create DataFrame for East Asia
    # add Income Group index as a column
    temp_asia = groups_asia.reset_index()
    # compute percentages and add as a new column
    temp_asia['Percentage'] = temp_asia['Count'] * 100 / temp_asia['Count'].sum()
    # add Region as a new column, filled with copies of the same string
    temp_asia['Region'] = ["East Asia & Pacific"] * len(groups_asia)
    # the same three steps for World
    temp_world = groups.reset_index()
    temp_world['Percentage'] = temp_world['Count'] * 100 / temp_world['Count'].sum()
    temp_world['Region'] = ["World"] * len(groups)
    # concatenate two DataFrames and display
    groups_concat = pd.concat([temp_asia, temp_world], axis=0)
```

```
display(groups_concat)
```

	Incom	e Group	\mathtt{Count}	Percentage				Region
0	Low	income	1	2.702703	East	Asia	&	Pacific
1	Lower middle	income	13	35.135135	East	Asia	&	Pacific
2	Upper middle	income	9	24.324324	East	Asia	&	Pacific
3	High	income	14	37.837838	East	Asia	&	Pacific
0	Low	income	26	12.037037				World
1	Lower middle	income	54	25.000000				World
2	Upper middle	income	54	25.000000				World
3	High	income	82	37.962963				World

• Stacked bar graph is not very automated in Matplotib.

- Left coordinate for each rectangle needs to be computed manually, then function **barh** is used (see also tutorial).
- Each bar is labeled with the percentage using **bar_label** function.

```
[31]: # list of regions and income groups
     tmp_regions = groups_concat['Region'].unique()
     tmp_groups = groups_concat['Income Group'].unique()
     # the first rectangles start at 0
     starts = pd.Series([0] * tmp regions.shape[0])
     # create plot
     figure, axes = plt.subplots()
     # iterate through income groups
     for group in tmp groups:
         # select data for this income group from both regions
         tmp data = groups concat.query("`Income Group` == @group")
         # plot
         rectangles = axes.barh(y=tmp data['Region'], width=tmp data['Percentage'],
       # add labels
         axes.bar_label(rectangles, label_type='center', fmt="%.0f%%")
         # move starts by the size of each rectangle
         starts += tmp_data['Percentage'].reset_index(drop=True)
     axes.legend(bbox_to_anchor=(1, 1), loc=2)
     # hide plot frame and x-axis ticks
     axes.xaxis.set_visible(False)
     axes.set_frame_on(False)
     pass
```


• Stacked bar charts are much easier in Plotly using px.bar function.

It can also be drawn easily directly by Pandas, but values (sizes of rectangles) are not shown. The table is first converted toa wide form with different income groups as columns.

\

Income Group	Low incor	ne Lowei	middle	income	Upper middle income	;
Region						
East Asia & Pacific	2.70270)3	35	.135135	24.324324	Ļ
World	12.03703	37	25	.000000	25.000000)
Income Group Region	High inco	ome				
East Asia & Pacific	37.8378	338				
World	37.9629	963				
					Low income	
					Lower middle income Upper middle income	
	vvoria				High income	
East As	sia & Pacific					
	0	20 40	60 8	30 100		

1.27 Colored bar graphs insteads of pie chart

• As we have seen before, colored bar graphs are easy in Seaborn from a long table.

Percentage of the number of countries

• Therefore we use groups_concat DataFrame.

1.28 Multiple bar graphs instead of pie chart

- In the next plot a separte bar graph for each region.
- This is also very simple in Seaborn using catplot with setting col='Region' and kind='bar'.
- Labels are rotated in each subplot using a for-loop.

1.29 Strip plot

- Strip plot of fertility per region is also very simple in **sns.catplot**.
- Setting kind='strip' is default for catplot, so it is omitted here.
- Size of dots is reduced to limit overlapping markers.

```
[36]: grid = sns.catplot(x="Fertility2020", y="Region", data=countries, size=3)
grid.set_axis_labels("Fertility in 2020", "")
pass
```


1.30 Histogram

```
[37]: grid = sns.displot(countries, x="Fertility2020", binwidth=0.5)
grid.set_axis_labels("Fertility 2020", "The number of countries")
pass
```


1.31 Parallel coordinates

- We want to display varipus properties of individual countries as parallel coordinate plot.
- We first create table for_parallel with selected columns and express all numbers as percentage of the maximum value.
- We add **selected** column which has True in row for Slovakia and False elsewhere. This is used to highlight Slovakia in the plot.
- Also ordering is changed to draw Slovakia the last.

	Population2020	Area	GDP2020	Expectancy2020	\
Country					
Greece	0.758174	0.771775	9.651333	95.076168	
Greenland	0.003995	2.400538	29.962671	83.788155	
Fiji	0.065227	0.106853	2.638193	79.445541	
Zimbabwe	1.110458	2.285380	0.752009	71.492098	
Slovak Republic	0.386849	0.286754	10.711280	89.904148	
	Fertility2020	selected			
Country					

Crosso	20 169211	Folgo
GIEECE	20.100311	raise
Greenland	29.294835	False
Fiji	36.201393	False
Zimbabwe	51.436448	False
Slovak Republic	23.070226	True

• Parallel coordinates are drawn using Pandas parallel_coordinates function, which internally calls Matplotlib and returns Axes object.

1.32 Parallel categories

- We will use two categorical columns from the countries table, but more categorical columns could be easily added.
- We use the version of the table with a categorical income groups and sort countries by income.
- Now we use parallel-categories function from Plotly.
- This function orders each column of the figure by size. By calling update_traces, we reorder the first column by the same order as they first occur in our table.

```
[40]: for_parallel_cat = (countries_cat.loc[:,['Income Group','Region']]
                                .sort_values('Income Group', ascending=False))
fig = px.parallel_categories(for_parallel_cat, width=800)
fig.update_traces(dimensions=[{"categoryorder": "array"}, {}])
fig.update_layout(font_size=20)
fig.update_layout(margin={'l':200,'r':200})
fig.show()
```

1.33 Radar chart

- Radar charts are not well supported in any of the used libraries.
- Below we compute angles of each axis manually, then use plot from Matplotlib.
- When creating axes, we specify polar coordinates subplot_kw={'projection': 'polar'}.
- We also use set_thetagrids

```
[41]: # skip 'selected' column, use only 3 countries
for_radar = for_parallel.loc[['India','China','United States'], :].iloc[:, 0:-1]
display(for_radar.head())
```

```
# setup plot with polar coordinates
sns.set_theme(style="whitegrid")
figure, axes = plt.subplots(subplot_kw={'projection': 'polar'})
categories = list(for_radar.columns)
import math
angles = [ i * 2 * math.pi / len(categories) for i in range(len(categories))]
angles_deg = [x / math.pi * 180 for x in angles]
axes.set_thetagrids(angles_deg, labels=categories)
# for plotting, we will need to return to starting point in each line
angles.append(angles[0])
# for each country create list of values, add the starting point, plot
for country in for_radar.index:
   values = list(for_radar.loc[country, :])
   values.append(values[0])
   axes.plot(angles, values, label=country)
axes.legend(bbox_to_anchor=(1.05, 1), loc=2)
pass
```

	Population2020	Area	GDP2020	Expectancy2020	\
Country					
India	98.957347	19.225710	1.048125	82.049124	
China	100.000000	55.929174	5.702240	91.320734	
United States	23.493127	57.500095	34.803081	90.038227	

Fertility2020

Country	
India	29.759141
China	18.586767
United States	23.817470

Lecture 4 Summary statistics

<u>Data visualization · 1-DAV-105</u> Lecture by Broňa Brejová More details in the <u>notebook version</u>

Introduction

Summary statistics (popisné charakteristiky / štatistiky):

quantities that summarize basic properties of a single variable (a table column), such as the mean.

We can also characterize dependencies between pairs of variables.

Together with simple plots, they give us the first glimpse at the data when working with a new data set.

Data set for today

- The same data set as in group tasks 04.
- The data set describes 2049 movies.
- Originally downloaded from https://www.kaggle.com/rounakbanik/the-movies-dataset and preprocessed, keeping only movies with at least 500 viewer votes.

url = 'https://bbrejova.github.io/viz/data/Movies_small.csv'
movies = pd.read_csv(url)
display(movies.head())

overview	<pre>vote_count</pre>	vote_average	release_date	runtime	original_language	revenue	budget	year	title
Led by Woody, Andy's toys live happily in his	5415.0	7.7	1995-10-30	81.0	en	373554033.0	30000000.0	1995	Toy Story
When siblings Judy and Peter discover an encha	2413.0	6.9	1995-12-15	104.0	en	262797249.0	65000000.0	1995	Jumanji
Obsessive master thief, Neil McCauley leads a	1886.0	7.7	1995-12-15	170.0	en	187436818.0	6000000.0	1995	Heat
James Bond must unmask the mysterious head of	1194.0	6.6	1995-11-16	130.0	en	352194034.0	58000000.0	1995	GoldenEye
The life of the gambling paradise – Las Vegas	1343.0	7.8	1995-11-22	178.0	en	116112375.0	52000000.0	1995	Casino

Measures of central tendency (miery stredu / polohy)

These represent a **typical value** in a sample $x = x_1, \dots, x_n$ (one numerical column).

Mean (priemer) $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$ This is the arithmetic mean, there are also geometric and harmonic means.

Median (medián) is the middle value when the values ordered by size. For even *n* usually defined as the average of the two middle values. Example:

Median of 10, 12, 15, 16, 16 is 15. Median of 10, 12, 15, 16, 16, 20 is 15.5.

Measures of central tendency (cont.)

- Mean (priemer)
- Median (medián)
- **Mode (modus)** is the most frequent value (for a discrete variable). Mode of 10,12,15,16,16 is 16.

For continuous variables, we may look for a mode in a histogram. This is sensitive to bin size.

https://commons.wikimedia.org/wiki/File:Visualisation_mode_median_mean.svg

Properties of the measures

If we apply **linear transformation** $a \cdot x_i + b$ with the same *a* and *b* to all x_i , mean, median and mode will be transformed **in the same way**.

This corresponds e.g. to the change in the units of measurement (grams vs kilograms, degrees C vs degrees F)

Mean can be heavily influenced by outliers

800, 1000, 1100, 1200, 1800, 2000, 30000: mean 5414.3, median 1200 800, 1000, 1100, 1200, 1800, 2000, 10000: mean 2557.1, median 1200

Therefore we often **prefer median** (e.g. median salary).

Computation in Pandas

```
display(Markdown("**Properties of the column `year` in our table:**"))
print(f"Mean: {movies['year'].mean():.2f}")
print(f"Median: {movies['year'].median()}")
print(f"Mode:\n{movies['year'].mode()}")
```

Properties of the column year in our table:

Mean: 2004.14 Median: 2008.0 Mode: 0 2013 Name: year, dtype: int64

Shown in a histogram (whole and detail)

What causes the difference between the mean and the median?

Summarizing many columns or rows

- Functions mean and median can be applied to all numerical columns
- With axis=1 we get means or medians in rows

display(movies.mean(numeric_only=True))

year	2,004.1
budget	55,108,939.7
revenue	198,565,134.3
runtime	112.7
vote_average	6.6
vote_count	1,704.6
dtype: float64	

Quantiles, percentiles and quartiles (kvantily, percentily, kvartily)

Median is the middle value in a sorted order; about 50% of values are smaller and 50% larger.

For a percentage *p*, the *p*-th percentile is at position roughly $(p/100) \cdot n$ in the sorted order of values.

Similarly **quantile** (in Pandas), but we give fraction between 0 and 1 rather than percentage.

Quartiles are three values Q_1 , Q_2 and Q_3 that split input data into quarters. Therefore, Q_2 is the median.

Quantiles in Pandas

```
display(Markdown("**Median:**"),
            movies['year'].median())
display(Markdown("**Quantile for 0.5:**"),
            movies['year'].quantile(0.5))
display(Markdown("**All quartiles:**"),
            movies['year'].quantile([0.25, 0.5, 0.75]))
display(Markdown("**With step 0.1:**"),
            movies['year'].quantile(np.arange(0.1, 1, 0.1)))
```

Median: 2008.0 Quantile for 0.5: 2008.0 All quartiles: 0.25 2,000.00 2,008.00 0.50 0.75 2.013.00 Name: year, dtype: float64 With step 0.1: 0.10 1,988.80 0.20 1,998.00 0.30 2,002,00 0.40 2,005,00 0.50 2,008.00 0.60 2,010.00 0.70 2,012.00 0.80 2,014.00 2,015.00 0.90 Name: year, dtype: float64

Quartiles in a histogram (whole and detail)

Quantile interpolation

Optional parameter interpolation accepts values `linear' (default), 'lower', 'higher', `midpoint', 'nearest'.

Minimum is at quantile 0, maximum at quantile 1, the rest evenly spaced between.

The quantile between two elements is influenced only by its two neighbors.

Example: list [0,10,20,100]

p=0: 0, p=1/3: 10, p=2/3: 20, p=1: 100

p=1/4: by default linear interpolation at 3/4 between 0 and 10, i.e. 7.5.

Linear interpolation is continuous as p changes from 0 to 1.

Quantile interpolation

Quantiles for [0, 10, 20, 100]

0.01 0.30 0.25 7.50 0.50 15.00 0.75 40.00 dtype: float64

Quantiles for [0, 10, 20, 100] with interpolation='lower'

0.01	0
0.25	0
0.50	10
0.75	20
dtype:	int64

Measures of variability (miery variability)

Values in the sample may be close to central values or spread widely.

Examples of measures:

Range of values from minimum to maximum (sensitive to outliers).

Interquartile range IQR (kvartilové rozpätie): range between Q_1 and Q_3 (contains the middle half of the data).

Variance and standard deviation (next)

Variance (rozptyl)

For each x_i square its difference from the mean

Squaring gives non-negative values (and squares are easier to work with mathematically than absolute values).

Variance is the mean of these squares, but we divide by n-1 rather than n:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1}$$

Division by *n* would underestimate the true variance of the underlying population (more in the statistics course).
Standard deviation (smerodajná odchýlka)

Square root of the variance

$$s = \sqrt{s^2}$$

It is in the same units as the original values (variance is in units squared).

Recall:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1}$$

Properties

Larger variance and standard deviation mean that data are spread farther from the mean.

If we apply **linear transformation** $a \cdot x_i + b$ with the *a* and *b* to all x_i : Neither variance nor standard deviation change with *b*. Variance is multiplied by a^2 , standard deviation by |a|.

These measures are strongly **influenced by outliers**: 800, 1000, 1100, 1200, 1800, 2000, 30000: st. dev. 10850.0, IQR 850 800, 1000, 1100, 1200, 1800, 2000, 10000: st. dev. 3310.5, IQR 850.

```
display(Markdown("**Minimum**"),
                                                 Minimum
        movies['year'].min())
                                                 1927
display(Markdown("**Maximum**"),
                                                 Maximum
        movies['year'].max())
                                                 2017
display(Markdown("**Mean**"),
                                                 Mean
        movies['year'].mean())
                                                 2004.1449487554905
display(Markdown("**Variance**"),
                                                 Variance
        movies['year'].var())
                                                 161.2714600681735
display(Markdown("**Standard deviation**"),
                                                 Standard deviation
        movies['year'].std())
q1 = movies['year'].quantile(0.25)
                                                 12.699270060447313
q3 = movies['year'].quantile(0.75)
                                                 Q1, Q3 and IQR:
display(Markdown("**Q1, Q3 and IQR:**"),
                                                 2000.0
                                                 2013.0
        q1, q3, q3-q1)
                                                 13.0
```

Outliers (odľahlé hodnoty)

Outliers are the values which are far from the typical range of values.

In data analysis, it is important to **check outliers**.

If they represent **errors**, we may try to correct or remove them.

They can also represent interesting anomalies.

Different definitions of outliers may be appropriate in different situations.

One possible definition of outliers

The criterion by statistician John Tukey:

Outliers are the values outside of the range $[Q_1 - k \cdot IQR, Q_3 + k \cdot IQR]$, e.g. for k = 1.5.

In our example 800, 1000, 1100, 1200, 1800, 2000, 30000: $Q_1 = 1050, Q_3 = 1900, IQR = 850.$ $Q_1 - 1.5 \cdot IQR = -225, Q_3 + 1.5 \cdot IQR = 3175.$

Outliers are values smaller than -225 or larger than 3175; here only 30000.

The range of outliers is not influenced if we change the outliers.

Computation in Pandas

```
# get guartiles and igr
q1 = movies['year'].guantile(0.25)
q3 = movies['year'].quantile(0.75)
igr = q3 - q1
# compute thresholds for outliers
lower = q1 - 1.5 * iqr
upper = q_3 + 1.5 * iq_7
# count outliers
count = movies.query('year < @lower or year > @upper')['year'].count()
```

Outliers outside of range: [1980.5, 2032.5] Outlier count: 112 Total count: 2049

Boxplot (krabicový graf)

Developed by Mary Eleanor Hunt Spear and John Tukey.

It shows the **five-number summary:** min, *Q*1, median (*Q*2), *Q*3, max

Q1 and Q3: a box, median: line through box, min and max: whiskers Outliers often excluded from the whiskers and shown as points.

Boxplots are used for quick comparison

For small datasets we may add strip plot

Works well for smaller languages, mess for en.

What do we see for sv, pt, th, hi, nb, id?

Code for the plot

Quick overview of a data set: describe in Pandas

movies.describe()

	year	budget	revenue	runtime	vote_average	<pre>vote_count</pre>
count	2,049.00	1,959.00	1,965.00	2,049.00	2,049.00	2,049.00
mean	2,004.14	55,108,939.70	198,565,134.28	112.66	6.63	1,704.64
std	12.70	53,139,663.86	233,028,732.94	24.76	0.77	1,607.89
min	1,927.00	1.00	15.00	7.00	4.00	501.00
25%	2,000.00	16,000,000.00	52,882,018.00	97.00	6.10	709.00
50%	2,008.00	38,000,000.00	122,200,000.00	109.00	6.60	1,092.00
75%	2,013.00	75,000,000.00	250,200,000.00	124.00	7.20	2,000.00
max	2,017.00	380,000,000.00	2,787,965,087.00	705.00	9.10	14,075.00

movies.describe(include='all').transpose()

	count	unique	top	freq	mean	std	min	25%	50%
title	2049	2018	Beauty and the Beast	3	NaN	NaN	NaN	NaN	NaN
year	2,049.00	NaN	NaN	NaN	2,004.14	12.70	1,927.00	2,000.00	2,008.00
budget	1,959.00	NaN	NaN	NaN	55,108,939.70	53,139,663.86	1.00	16,000,000.00	38,000,000.00
revenue	1,965.00	NaN	NaN	NaN	198,565,134.28	233,028,732.94	15.00	52,882,018.00	122,200,000.00
original_language	2049	16	en	1958	NaN	NaN	NaN	NaN	NaN
runtime	2,049.00	NaN	NaN	NaN	112.66	24.76	7.00	97.00	109.00
release_date	2049	1740	2014-12-25	6	NaN	NaN	NaN	NaN	NaN
vote_average	2,049.00	NaN	NaN	NaN	6.63	0.77	4.00	6.10	6.60
vote_count	2,049.00	NaN	NaN	NaN	1,704.64	1,607.89	501.00	709.00	1,092.00
overview	2049	2049	Led by Woody, Andy's toys live happily in his	1	NaN	NaN	NaN	NaN	NaN

Correlation (korelácia)

We are often interested in **relationships** among variables (data columns).

Next: two correlation coefficients that measure strength of such relationships.

Beware: correlation does not imply causation

Correlation does not imply causation

If electricity consumption grows in a very cold weather, there might be **cause-and-effect** relationship: the cold weather is causing people to use more electricity for heating.

If healthier people tend to be happier, which is the cause and which is effect?

Both studied variables can be also influenced by some third, **unknown factor.** For example, within a year, deaths by drowning increase with increased ice cream consumption. Both increases are spurred by warm weather.

The observed correlation can be just a **coincidence**, see the <u>Redskins rule</u> and a specialized webpage <u>Spurious Correlations</u>. You can easily find such "coincidences" by comparing many pairs of variables.

Pearson correlation coefficient

It measures linear relationship between two variables.

Consider pairs of values $(x_1, y_1), \dots, (x_n, y_n)$, where (x_i, y_i) are two different features of the same object.

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x}\right) \left(\frac{y_i - \bar{y}}{s_y}\right).$$

where s_x is the standard deviation of variable *x*.

Pearson correlation coefficient

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right).$$

Expression $(x_i - \bar{x})/s_x$ is called the **standard score** or **z-score**: how many standard deviations above or below the mean is x_i ?

The product of z-scores for x_i and y_i is positive iff they lie on the same side of the respective means of x and y.

Properties of Pearson correlation coefficient

The value of r is always from interval [-1,1].

1 if *y* grows linearly with *x*,

-1 if *y* decreases linearly 0 means no correlation.

https://commons.wikimedia.org/wiki/File:Correlation_coefficient.png

Some cautions

Pearson correlation measures only linear relationships (bottom row) Pearson correlation does not depend on the slope of the best-fit line (middle row)

https://commons.wikimedia.org/wiki/File:Correlation_examples2.svg

Properties of Pearson correlation

What if we linearly scale each variable, i.e. ax_i+b , cy_i+d ? What if a>0, a=0, a<0?

What if we switch x and y?

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right).$$

Properties of Pearson correlation

Pearson correlation does not change if we linearly scale each variable, i.e. ax_i+b , cy_i+d (for a,c>0).

Pearson correlation is symmetric wrt. *x* and *y*.

Due to reliance on mean and std.dev. it is sensitive to outliers.

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right).$$

Linear regression

The process of finding the line best representing the relationship of x and y. In higher dimensions we can predict one variable as a linear combination of many. You will study linear regression in later courses. We may draw regression lines in some plots.

Spearman's rank correlation coefficient

It can detect non-linear relationships.

We first convert each variable into **ranks**: Rank of x_i is its index in the sorted order of x_1, \ldots, x_n . Equal values get the same (average) rank. For example, the ranks of 10, 0, 10, 20, 10, 20 are 3, 1, 3, 5.5, 3, 5.5.

Then we compute **Pearson correlation coefficient of the two rank sequences**.

Properties of Spearman's rank correlation coeficient

Values of 1, -1 if y monotonically increases or decreases with x.

It is less sensitive to outliers (actual values of *x* and *y* are not important).

https://commons.wikimedia.org/wiki/File:Spearman

Computation in Pandas

movies.corr(numeric_only=True)

	year	budget	revenue	runtime	vote_average	vote_count
year	1.00	0.28	0.12	-0.07	-0.34	0.12
budget	0.28	1.00	0.69	0.22	-0.18	0.47
revenue	0.12	0.69	1.00	0.25	0.06	0.69
runtime	-0.07	0.22	0.25	1.00	0.31	0.25
vote_average	-0.34	-0.18	0.06	0.31	1.00	0.33
vote_count	0.12	0.47	0.69	0.25	0.33	1.00

Computation in Pandas (cont.)

movies.corr(method='spearman', numeric_only=True)

	year	budget	revenue	runtime	vote_average	vote_count
year	1.00	0.21	0.02	-0.03	-0.27	0.14
budget	0.21	1.00	0.68	0.24	-0.28	0.37
revenue	0.02	0.68	1.00	0.21	-0.08	0.56
runtime	-0.03	0.24	0.21	1.00	0.32	0.27
vote_average	-0.27	-0.28	-0.08	0.32	1.00	0.29
vote_count	0.14	0.37	0.56	0.27	0.29	1.00


```
figure, axes = plt.subplots(1, 2, figsize=(10,5))
# plot of values
sns.regplot(x=movies['revenue'] / 1e6, y=movies['vote count'],
            ax=axes[0], scatter kws={'alpha':0.7, 's':5})
axes[0].set xlabel('revenue in millions')
axes[0].set ylabel('vote count')
# compute ranks
revenue rank = movies['revenue'].rank()
vote count rank = movies['vote count'].rank()
# plot of ranks
sns.regplot(x=revenue rank, y=vote count rank,
            ax=axes[1], scatter kws={'alpha':0.7, 's':5})
axes[1].set xlabel('rank of revenue')
                                                    16000
axes[1].set ylabel('rank of vote count')
                                                    14000
```


Anscombe's quartet

Four **artificial data sets** designed by Francis Anscombe.

The same or very similar values of: means and variances of *x* and *y*, Pearson correlation coefficient (0.816) and linear regression line.

Anscombe's quartet

The same summary statistics, but visually very different

Importance of visualization:

Plots often give us a much better idea of the properties of a data set than simple numerical summaries.

The bottom row illustrates the influence of outliers on correlation and regression.

20

Visual overview of a data set: pairplot in Seaborn

All histograms + scatterplots

How to compute summaries for groups?

How to compute summaries for groups?

Method groupby splits the table into groups based on values of some column.

We can apply a summary statistics function or describe on each group.

movies.groupby('original_language').median(numeric_only=True).head()

	year	budget	revenue	runtime	vote_average	vote_count
original_language						
cn	2,006.00	12,902,809.00	39,388,380.00	108.50	7.20	762.50
da	2,010.00	10,000,000.00	16,740,418.00	119.00	6.80	867.50
de	2,003.50	6,250,000.00	70,000,000.00	129.00	7.60	669.00
en	2,008.00	40,000,000.00	126,397,819.00	109.00	6.60	1,126.00
es	2,007.00	2,000,000.00	30,448,000.00	118.00	7.60	797.00

subset = movies.loc[:, ['original_language', 'year', 'budget']]
subset.groupby('original_language').describe().head(3).transpose()

	original_language	cn	da	de	E
year	count	4.00	6.00	8.00	
	mean	2,005.75	2,009.33	1,992.50	
	std	4.03	3.61	28.13	
	min	2,001.00	2,003.00	1,927.00	
	25%	2,003.25	2,008.25	1,993.75	
	50%	2,006.00	2,010.00	2,003.50	
	75%	2,008.50	2,011.75	2,006.50	
	max	2,010.00	2,013.00	2,013.00	
budget	count	3.00	5.00	8.00	
	mean	14,872,795.67	13,440,000.00	18,223,718.75	

Summary

Summary statistics:

- mean, median, mode
- percentiles, quantiles, quartiles
- min, max, interquartile range, variance, standard deviation
- Pearson and Spearman correlation

More details in a statistics course

Visualization:

- boxplot
- scatter plots with regression lines
- pairplot

Pandas:

- functions for computing statistics, describe
- groupby

Next week: more Pandas

1 Lecture 4: Summary statistics

Data Visualization $\,\cdot\,$ 1-DAV-105

Lecture by Broňa Brejová

1.1 Introduction

- Summary statistics (popisné charakteristiky / štatistiky) are quantities that summarize basic properties of a single variable (a table column), such as the mean.
- We can also characterize dependencies between pairs of variables.
- Together with simple plots, such as histograms, they give us the first glimpse at the data when working with a new data set.
- We start by loading the movie data set, which we use to illustrate these terms.

1.2 Importing the movie data set

- The same data set as in group tasks 04.
- The data set describes 2049 movies.
- The data set was downloaded from https://www.kaggle.com/rounakbanik/the-movies-dataset and preprocessed, keeping only movies with at least 500 viewer votes.

```
[1]: import numpy as np
import pandas as pd
from IPython.display import Markdown
import matplotlib.pyplot as plt
import seaborn as sns
pd.options.display.float_format = '{:,.2f}'.format
```

```
[2]: url = 'https://bbrejova.github.io/viz/data/Movies_small.csv'
movies = pd.read_csv(url)
display(movies.head())
```

	title	year	budget	revenue	original_language	runtime	\
0	Toy Story	1995	30,000,000.00	373,554,033.00	en	81.00	
1	Jumanji	1995	65,000,000.00	262,797,249.00	en	104.00	
2	Heat	1995	60,000,000.00	187,436,818.00	en	170.00	
3	GoldenEye	1995	58,000,000.00	352,194,034.00	en	130.00	
4	Casino	1995	52,000,000.00	116,112,375.00	en	178.00	

	release_date	vote_average	vote_count	\
0	1995-10-30	7.70	5,415.00	
1	1995-12-15	6.90	2,413.00	
2	1995-12-15	7.70	1,886.00	
3	1995-11-16	6.60	1,194.00	
4	1995-11-22	7.80	1,343.00	

overview

0 Led by Woody, Andy's toys live happily in his ...
- 1 When siblings Judy and Peter discover an encha...
- 2 Obsessive master thief, Neil McCauley leads a ...
- 3 James Bond must unmask the mysterious head of ...
- 4 The life of the gambling paradise Las Vegas ...

1.3 Measures of central tendency (miery stredu / polohy)

These represent a typical value in a sample x with values x_1, \ldots, x_n (one numerical column of a table).

- Mean (priemer) $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
 - This is the arithmetic mean, there are also geometric and harmonic means.
- Median (medián) is the middle value when the values ordered from smallest to largest.
 - For even n usually defined as the average of the two middle values.
 - Median of 10, 12, 15, 16, 16 is 15.
 - Median of 10, 12, 15, 16, 16, 20 is 15.5.
- Mode (modus) is the most frequent value (for a discrete variable).
 - Mode of 10,12,15,16,16 is 16.
 - For continuous variables, we may look for a mode in a histogram (this is sensitive to bin size).

https://commons.wikimedia.org/wiki/File:Visualisation_mode_median_mean.svg Cmglee, CC BY-SA 3.0

1.3.1 Properties of the measures

- If we apply linear transformation $a \cdot x_i + b$ with the same constants a and b to all values x_i , mean, median and mode will be also transformed in the same way.
 - This corresponds e.g. to the change in the units of measurement (grams vs kilograms, degrees C vs degrees F)
- Mean can be heavily influenced by outliers.
 - Mean of 800, 1000, 1100, 1200, 1800, 2000 and 30000 is 5414.3, median 1200.
 - Mean of 800, 1000, 1100, 1200, 1800, 2000 and 10000 is 2557.1, median 1200.
- Therefore we often prefer median (e.g. median salary).

1.3.2 Computation in Pandas

Below we apply functions mean, median, mode to a Series (column year of our table).

Note that mode returns a Series of results (for case of ties). Here just a single value 2013.

Note the use of Python f-strings to print the results.

```
[3]: display(Markdown("**Properties of the column `year` in our table:**"))
print(f"Mean: {movies['year'].mean():.2f}")
print(f"Median: {movies['year'].median()}")
print(f"Mode:\n{movies['year'].mode()}")
```

Properties of the column year in our table:

Mean: 2004.14 Median: 2008.0 Mode: 0 2013 Name: year, dtype: int64

Let us see these values in a histogram of the column values (overall view and detail).

```
[4]: # set up figure with two plots
     figure, axes = plt.subplots(1, 2, figsize=(8,3), sharey=True)
     # plot histograms, use discrete=True to have each year in one bin
     sns.histplot(data=movies, x='year', discrete=True, ax=axes[0])
     sns.histplot(x=movies.query('year>=2000')['year'], discrete=True, ax=axes[1])
     # titles and axis labels
     axes[0].set ylabel("The number of movies")
     axes[0].set title('All years in the dataset')
     axes[1].set_title('Years 2000-2017')
     # compute three summary statics, set up their color and label
     stats = [{'label':'mean', 'value':movies['year'].mean(), 'color':'red'},
              {'label':'median', 'value':movies['year'].median(), 'color':'green'},
              {'label':'mode', 'value':movies['year'].mode(), 'color':'black'}]
     # add dots for all statistics to both plots (at y=5)
     for a in axes:
       for s in stats:
         a.plot(s['value'], 5, 'o', color=s['color'], label=s['label'])
       a.legend()
     pass
```


- Functions mean and median can be applied to all numerical columns in a table.
- With axis=1 we can compute means or medians in rows.

```
movies.mean(numeric_only=True):
```

year	2,004.14			
budget	55,108,939.70			
revenue	198,565,134.28			
runtime	112.66			
vote_average	6.63			
vote_count	1,704.64			
dtype: float64				

movies.median(numeric_only=True):

year	2,008.00				
budget	38,000,000.00				
revenue	122,200,000.00				
runtime	109.00				
vote_average	6.60				
vote_count	1,092.00				
dtype: float64					

1.4 Quantiles, percentiles and quartiles (kvantily, percentily, kvartily)

- Median is the middle value in a sorted order.
- Therefore about 50% of values are smaller and 50% larger.
- For a different percentage p, the p-th **percentile** is at position roughly $(p/100) \cdot n$ in the sorted order of values.
- Similarly quantile (in Pandas), but we give fraction between 0 and 1 rather than percentage.
- Specifically quartiles are three values Q₁, Q₂ and Q₃ that split input data into quarters.
 Therefore, Q₂ is the median.
- Many definitions exist regarding situations when the desired fraction falls between two values (we can take lower, higher, mean, weighted mean etc).

1.4.1 Computation in Pandas

- Function quantile gets a single value between 0 and 1 or a list of values and returns corresponding quantiles.
- To get quantiles for 0.1, 0.2, ..., 0.9, we generate a regular sequence of values using np.arange.

Median:

2008.0

Quantile for 0.5:

2008.0

All quartiles:

0.25 2,000.00 0.50 2,008.00 0.75 2,013.00 Name: year, dtype: float64

With step 0.1:

0.10 1,988.80 0.20 1,998.00 0.30 2,002.00 0.40 2,005.00 0.50 2,008.00 0.60 2,010.00 0.70 2,012.00 0.80 2,014.00 0.90 2,015.00 Name: year, dtype: float64

The code below plots the quartiles highlighted in a histogram.

- The code below illustrates how the quantile function works when returning quantiles which do not correspond to a single input value.
- Optional parameter interpolation accepts values 'linear' (default), 'lower', 'higher', 'midpoint', 'nearest'.
- Imagine the lowest element at quantile 0, the highest element at quantile 1 and the rest evenly spaced between. The quantile at position between two elements is influenced only by its two neighbors.

For example, consider list of values [0,10,20,100]. * Values taken from the list: p = 0: 0, p = 1/3: 10, p = 2/3: 20, p = 1: 100 * Example of a different value: p = 1/4: by default linear interpolation at 3/4 between 0 and 10, i.e. 7.5.

Note that linear interpolation is continuous as p changes from 0 to 1.

```
[8]: a = pd.Series([0, 100])
b = pd.Series([0, 10, 20, 30, 100])
c = pd.Series([0, 10, 20, 100])
quantiles = [0.01, 0.25, 0.5, 0.75]
display(Markdown(f"**Quantiles for {list(a)}**"), a.quantile(quantiles))
display(Markdown(f"**Quantiles for {list(b)}**"), b.quantile(quantiles))
display(Markdown(f"**Quantiles for {list(c)}**"), c.quantile(quantiles))
display(Markdown(f"**Quantiles for {list(c)}**"), c.quantile(quantiles))
display(Markdown(f"**Quantiles for {list(c)}**"), c.quantile(quantiles))
display(Markdown(f"**Quantiles for {list(c)}**"), c.quantile(quantiles))
```

Quantiles for [0, 100]

0.01 1.00 0.25 25.00 0.50 50.00 0.75 75.00 dtype: float64

Quantiles for [0, 10, 20, 30, 100]

0.01 0.40 0.25 10.00 0.50 20.00 0.75 30.00 dtype: float64 Quantiles for [0, 10, 20, 100] 0.01 0.30 0.25 7.50 0.50 15.00 0.75 40.00 dtype: float64

Quantiles for [0, 10, 20, 100] with interpolation='lower'

0.01 0 0.25 0 0.50 10 0.75 20 dtype: int64

1.5 Measures of variability (miery variability)

- Values in the sample may be close to their mean or median, or they can spread widely.
- It is important to consider how representative is the mean or median of the whole set.

Examples of measures:

- Range of values from **minimum** to **maximum** (sensitive to outliers).
- Interquartile range IQR (kvartilové rozpätie): range between Q_1 and Q_3 (contains the middle half of the data).
- Variance and standard deviation (described next).

1.5.1 Variance and standard deviation (rozptyl a smerodajná odchýlka)

Variance

- For each value in the sample compute its difference from the mean and square it: $(x_i \bar{x})^2$.
- After squaring, we get non-negative values (and squares are easier to work with mathematically than absolute values).
- Variance is the mean of these squares, but we divide by n-1 rather than n:

$$s^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$$

- We divide by n-1 rather than n, because we would otherwise underestimate the true variance of the underlying population (more in the statistics course).
- For large n, the difference between dividing by n and n-1 is negligible.

Standard deviation

• Square root of the variance

$$s = \sqrt{s^2}$$

• It is expressed in the same units as the original values (variance is in units squared).

Properties

- Larger variance and standard deviation mean that data are spread farther from the mean
- If we apply linear transformation $a \cdot x_i + b$ with the same constants a and b to all values x_i : - Neither variance nor standard deviation change with b.
 - Variance is multiplied by a^2 , standard deviation by |a|.
- These measures are strongly influenced by outliers:
 - For 800, 1000, 1100, 1200, 1800, 2000, 30000 st. dev. is 10850.0, IQR 850.
 - For 800, 1000, 1100, 1200, 1800, 2000, 10000 st. dev. is 3310.5, IQR 850.

1.5.2 Computation in Pandas

We can use functions min, max, std, var, which work similarly to mean.

```
[9]: display(Markdown("**Minimum**"), movies['year'].min())
display(Markdown("**Maximum**"), movies['year'].max())
display(Markdown("**Mean**"), movies['year'].mean())
display(Markdown("**Variance**"), movies['year'].var())
display(Markdown("**Standard deviation**"), movies['year'].std())
q1 = movies['year'].quantile(0.25)
q3 = movies['year'].quantile(0.75)
display(Markdown("**Q1, Q3 and interquartile range:**"), q1, q3, q3-q1)
```

Minimum

1927

Maximum

2017

Mean

2004.1449487554905

Variance

161.2714600681735

Standard deviation

12.699270060447313

Q1, Q3 and interquartile range:

2000.0

2013.0

13.0

1.6 Outliers (odľahlé hodnoty)

- Outliers are the values which are far from the typical range of values.
- In data analysis, it is important to **check the outliers**.
- If they represent errors, we may try to correct or remove them.

- They can also represent interesting anomalies.
- Different definitions of outliers may be appropriate in different situations.
- The criterion by statistician John Tukey is often used:

– Outliers are the values outside of the range $Q_1 - k \cdot IQR, Q_3 + k \cdot IQR$, e.g. for k = 1.5. • In our example 800, 1000, 1100, 1200, 1800, 2000, 30000:

- $-Q_1 = 1050, Q_3 = 1900, IQR = 850.$
- $-Q_1 1.5 \cdot IQR = -225, Q_3 + 1.5 \cdot IQR = 3175.$
- Outliers are values smaller than -225 or larger than 3175; here only 30000.
- The range of outliers is not influenced if we change outliers values (as long as they stay outside of range Q1-Q3).

1.6.1 Computation in Pandas

- The code below finds outliers in the year column.
- We compute the lower and upper thresholds manually from quartiles.
- Then we use query to select rows and count how many there are.
- Function count counts the values in a Series or columns of a DataFrame, ignoring missing values.

[10]: # get quartiles and iqr

```
q1 = movies['year'].quantile(0.25)
q3 = movies['year'].quantile(0.75)
iqr = q3 - q1
# compute thresholds for outliers
lower = q1 - 1.5 * iqr
upper = q3 + 1.5 * iqr
# count outliers
count = movies.query('year < @lower or year > @upper')['year'].count()
# print results
display(Markdown(f"**Outliers outside of range:** [{lower}, {upper}]"))
display(Markdown(f"**Outlier count:** {count}"))
display(Markdown(f"**Total count:** {movies['year'].count()}"))
```

Outliers outside of range: [1980.5, 2032.5]

Outlier count: 112

Total count: 2049

1.7 Boxplot (krabicový graf)

- Boxplots were developed by Mary Eleanor Hunt Spear and John Tukey.
- For a single numerical variable it shows the **five-number summary** consisting of the minimum, Q_1 , median (Q_2) , Q_3 and the maximum.
- Median is shown as a thick line, Q_1 and Q_3 as a box and minimum and maximum as "whiskers".
- Outliers are often excluded from the whiskers and shown as individual points.
- Summaries of different samples are often compared in a single boxplot.
- Boxplots allow clear comparison of basic characteristics.

1.7.1 Boxplots in Seaborn

- We use **boxplot** finction from Seaborn.
- Below is a simple horizontal boxplot of the year column.
- Recall that quartiles are 2000, 2008 and 2013, minimum 1927, maximum 2017, outliers outside of [1980.5, 2032.5].

- Below is a vertical boxplot of the year column split into groups according to language.
- This is achieved by specifying both \boldsymbol{x} and \boldsymbol{y} options.

- Below we draw a strip plot on top of the boxplot.
- This allows us to see both individual data points and the summary.
- Here it does not work very well for en, better suited for smaller datasets.

• We see that some languages have extremely low number of points, boxplots not ideal in that case.

1.8 Quick overview of a data set: describe in Pandas

Function describe gives a quick overview of a data set with many statistics described today.

```
[14]: movies.describe()
```

[14]:		year	budget	revenue	runtime	vote_average	١
	count	2,049.00	1,959.00	1,965.00	2,049.00	2,049.00	
	mean	2,004.14	55,108,939.70	198,565,134.28	112.66	6.63	
	std	12.70	53,139,663.86	233,028,732.94	24.76	0.77	
	min	1,927.00	1.00	15.00	7.00	4.00	
	25%	2,000.00	16,000,000.00	52,882,018.00	97.00	6.10	
	50%	2,008.00	38,000,000.00	122,200,000.00	109.00	6.60	
	75%	2,013.00	75,000,000.00	250,200,000.00	124.00	7.20	
	max	2,017.00	380,000,000.00	2,787,965,087.00	705.00	9.10	

	vote_count
count	2,049.00
mean	1,704.64
std	1,607.89
min	501.00
25%	709.00
50%	1,092.00

75%	2,000.00
max	14,075.00

- By default describe only considers numerical columns.
- Other columns can be included by include='all'.
- Different statistics reported for categorical columns (unique, top, freq).

```
[15]: movies.describe(include='all').transpose()
[15]:
                             count unique

                              2049
                                     2018
      title
      year
                         2,049.00
                                      NaN
                         1,959.00
                                      NaN
      budget
                          1,965.00
      revenue
                                      NaN
      original_language
                              2049
                                       16
      runtime
                         2,049.00
                                      NaN
      release_date
                              2049
                                     1740
      vote_average
                         2,049.00
                                      NaN
      vote_count
                         2,049.00
                                      NaN
      overview
                              2049
                                     2049
                                                                            top
                                                                                 freq

                                                                                     3
      title
                                                          Beauty and the Beast
      year
                                                                            NaN
                                                                                   NaN
      budget
                                                                            NaN
                                                                                  NaN
                                                                            NaN
                                                                                  NaN
      revenue
      original_language
                                                                                  1958
                                                                             en
      runtime
                                                                            NaN
                                                                                  NaN
                                                                     2014-12-25
                                                                                     6
      release_date
      vote_average
                                                                            NaN
                                                                                   NaN
      vote_count
                                                                            NaN
                                                                                   NaN
      overview
                          Led by Woody, Andy's toys live happily in his ...
                                                                                   1
                                                     std
                                                               min
                                                                              25%
                                                                                   \
                                    mean
      title
                                     NaN
                                                     NaN
                                                               NaN
                                                                              NaN
                                                                         2,000.00
                                2,004.14
                                                   12.70 1,927.00
      year
                          55,108,939.70
      budget
                                          53,139,663.86
                                                              1.00 16,000,000.00
      revenue
                          198,565,134.28 233,028,732.94
                                                             15.00 52,882,018.00
      original_language
                                     NaN
                                                     NaN
                                                               NaN
                                                                              NaN
                                                              7.00
      runtime
                                  112.66
                                                   24.76
                                                                            97.00
      release_date
                                     NaN
                                                     NaN
                                                               NaN
                                                                              NaN
      vote_average
                                    6.63
                                                    0.77
                                                              4.00
                                                                             6.10
      vote_count
                                1,704.64
                                                1,607.89
                                                            501.00
                                                                           709.00
      overview
                                                               NaN
                                                                              NaN
                                     NaN
                                                     NaN
                                     50%
                                                     75%
                                                                        max
      title
                                     NaN
                                                     NaN
                                                                        NaN
```

year	2,008.00	2,013.00	2,017.00
budget	38,000,000.00	75,000,000.00	380,000,000.00
revenue	122,200,000.00	250,200,000.00	2,787,965,087.00
original_language	NaN	NaN	NaN
runtime	109.00	124.00	705.00
release_date	NaN	NaN	NaN
vote_average	6.60	7.20	9.10
vote_count	1,092.00	2,000.00	14,075.00
overview	NaN	NaN	NaN

1.9 Correlation (korelácia)

- We are often interested in relationships among different variables (data columns).
- We will see two correlation coefficients that measure the strength of such relationships.
- Beware: correlation does not imply causation.
 - If electricity consumption grows in a very cold weather, there might be cause-and-effect relationship: the cold weather is causing people to use more electricity for heating.
 - If healthier people tend to be happier, which is the cause and which is effect?
 - Both studied variables can be also influenced by some third, unknown factor. For example, within a year, deaths by drowning increase with increased ice cream consumption.
 Both increases are spurred by warm weather.
 - The observed correlation can be just a coincidence, see the Redskins rule and a specialized webpage Spurious Correlations.
 - You can easily find such "coincidences" by comparing many pairs of variables (a practice called data dredging).

1.9.1 Pearson correlation coefficient

- It measures linear relationship between two variables.
- Consider pairs of values $(x_1,y_1),\ldots,(x_n,y_n),$ where (x_i,y_i) are two different features of the same object.

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

• Or equivalently:

$$r = \frac{1}{n-1} \sum_{i=1}^n \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right).$$

- where s_x is the standard deviation of variable x.
- Expression $(x_i \bar{x})/s_x$ is called the **standard score** or **z-score**, and it tells us how many standard deviations above or below the mean value x_i is.
- The product of $(x_i \bar{x})/s_x$ and $(y_i \bar{y})/s_y$ is positive if x_i and y_i lie on the same side of the respective means of x and y and negative if they lie on the opposite sides.

1.9.2 Properties of Pearson correlation coefficient

Values of Pearson correlation coefficient

• The value of r is always from interval [-1, 1].

- It is 1 if y grows linearly with x, -1 if y decreases linearly with increasing x.
- Zero means no correlation.
- Values between 0 and 1 mean intermediate value of positive correlation, values between -1 and 0 negative correlation.

https://commons.wikimedia.org/wiki/File:Correlation_coefficient.png Kiatdd, CC BY-SA 3.0

Some cautions

- Pearson correlation measures only linear relationships (x and y in the bottom row have nonlinear relationships but their correlation is 0).
- Pearson correlation does not depend on the slope of the best-fit line (see the middle row below).

https://commons.wikimedia.org/wiki/File:Correlation_examples2.svg public domain

Other properties

- Pearson correlation does not change if we linearly scale each variable, i.e. $ax_i + b$, $cy_i + d$ (for a, c > 0).
- Pearson correlation is symmetric $r_{x,y} = r_{y,x}$.

1.9.3 Linear regression

- The process of finding the line best representing the relationship of x and y is called linear regression.
- It can be used in higher dimensions to predict one variable as a linear combination of many others.
- You will study linear regression in later courses, but we may draw regression lines in some plots.

```
[16]: x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]
y1 = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]
sns.regplot(x=x, y=y1)
pass
```


1.9.4 Spearman's rank correlation coefficient

- It can detect non-linear relationships.
- We first convert each variable into ranks:
 - Rank of x_i is its index in the sorted order of x_1, \ldots, x_n .
 - Equal values get the same (average) rank.
 - For example, the ranks of 10, 0, 10, 20, 10, 20 are 3, 1, 3, 5.5, 3, 5.5.
- Then we compute Pearson correlation coefficient of the two rank sequences.
- Values of 1, -1 if y monotonically increases or decreases with x.
- It is less sensitive to distant outliers (actual values of x and y are not important).

https://commons.wikimedia.org/wiki/File:Spearman_fig1.svg Skbkekas, CC BY-SA 3.0

1.9.5 Computation in Pandas

Function **corr** computes correlation between all pairs of numerical columns. There is also a version to compare two Series.

In our table, the highest Pearson correlation is 0.69 for pairs (budget, revenue), (vote_count, revenue)

[17]: movies.corr(numeric_only=True)

[17]:

	year	budget	revenue	runtime	vote_average	vote_count
year	1.00	0.28	0.12	-0.07	-0.34	0.12
budget	0.28	1.00	0.69	0.22	-0.18	0.47
revenue	0.12	0.69	1.00	0.25	0.06	0.69
runtime	-0.07	0.22	0.25	1.00	0.31	0.25
vote_average	-0.34	-0.18	0.06	0.31	1.00	0.33
vote_count	0.12	0.47	0.69	0.25	0.33	1.00

With Spearman rank correlation, the correlation between **revenue** and **budget** remains similar, but correlation between **vote_count** and **budget** decreases from 0.69 to 0.56.

[10].	moviob:coli (i	noonou	a poarman, namorro_onry			iiiy iiuo)		
[18]:		year	budget	revenue	runtime	vote_average	vote_count	
	year	1.00	0.21	0.02	-0.03	-0.27	0.14	
	budget	0.21	1.00	0.68	0.24	-0.28	0.37	
	revenue	0.02	0.68	1.00	0.21	-0.08	0.56	
	runtime	-0.03	0.24	0.21	1.00	0.32	0.27	
	vote_average	-0.27	-0.28	-0.08	0.32	1.00	0.29	
	vote_count	0.14	0.37	0.56	0.27	0.29	1.00	

- Here we illustrate the regression line for revenue versus vote_count.
- We use Seaborn **regplot** to draw scatterplot together with the regression line.
- Points are made smaller and transparent by scatter_kws={'alpha':0.7, 's':5}.
- The plot on the right shows ranks instead of actual values.
- Ranks are computed using rank function for Series.

[18]: movies corr(method='spearman' numeric only=True)

• Pearson correlation coefficient is probably driven by outliers.

```
[19]: # figure with two plots
```


1.10 Anscombe's quartet and importance of visualization

- Anscombe's quartet are four artificial data sets designed by Francis Anscombe.
- All have the same or very similar values of means and variances of both x and y, Pearson correlation coefficient (0.816) and linear regression line.
- But visually we see each has a very different character.
- The bottom row illustrates the influence of outliers on correlation and regression.
- Overall this shows that plots give us a much better idea of the properties of a data set than simple numerical summaries.

```
[20]: # adapted from https://matplotlib.org/stable/gallery/specialty plots/anscombe.
      →html
      \mathbf{x} = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]
      v1 = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]
      y2 = [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]
      y3 = [7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73]
      x4 = [8, 8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8]
      y4 = [6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89]
      datasets = [(x, y1), (x, y2), (x, y3), (x4, y4)]
      figure, axes = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(7, 7))
      axes[0, 0].set(xlim=(0, 20), ylim=(2, 14))
      for ax, (x, y) in zip(axes.flat, datasets):
          ax.plot(x, y, 'o')
          # linear regression
          slope, intercept = np.polyfit(x, y, deg=1)
          ax.axline(xy1=(0, intercept), slope=slope, color='gray')
```


1.10.1 Visual overview of a data set: pairplot in Seaborn

- Seaborn pairplot generates a matrix of plots for all numerical columns.
- The diagonal contains histograms of individual columns.
- Off-diagonal entries are scatterplots of two columns.
- Here only 3 columns shown for simpler examination.

```
[21]: subset = movies.loc[:, ['vote_count', 'budget', 'revenue']]
grid = sns.pairplot(subset, height=2.5)
pass
```


1.11 Computing summaries of subsets of data: groupby from Pandas

- We have seen that Seaborn can create plots where data are split into groups according to a categorical variable.
- One example are boxplots, which we have seen today.
- How can we compute summary statistics for each such group in Pandas?

```
[22]: sns.boxplot(data=movies, x='original_language', y='year')
pass
```


- Pandas DataFrame supports function **groupby** which splits the table into groups based on values of some column.
- We can apply a summary statistics function on each group.
- Below we compute medians of all numerical columns for each language and show the first 5 languages.

[23]: movies.groupby('original_language').median(numeric_only=True).head()

[02].			1				`
[23]:		year	D	ouaget	revenue	runtime	1
	original_language						
	cn	2,006.00	12,902,8	809.00	39,388,380.00	108.50	
	da	2,010.00	10,000,0	00.00	16,740,418.00	119.00	
	de	2,003.50	6,250,0	00.00	70,000,000.00	129.00	
	en	2,008.00	40,000,0	00.00	126,397,819.00	109.00	
	es	2,007.00	2,000,0	00.00	30,448,000.00	118.00	
		vote_ave	erage vo	te_cou	unt		
	original_language						
	cn		7.20	762	.50		
	da		6.80	867	.50		
	de		7.60	669	.00		
	en		6.60	1,126	.00		
	es		7.60	797	.00		

- We can also apply describe on the groupby groups.
- Here only two numerical columns of the original table are shown.

```
[24]: subset = movies.loc[:, ['original_language', 'year', 'budget']]
subset.groupby('original_language').describe().head()
```

[24]: year \ 25% 50% 75% count \mathtt{std} min mean original_language 4.00 2,005.75 4.03 2,001.00 2,003.25 2,006.00 2,008.50 cn 6.00 2,009.33 3.61 2,003.00 2,008.25 2,010.00 2,011.75 da 8.00 1,992.50 28.13 1,927.00 1,993.75 2,003.50 2,006.50 de 1,958.00 2,004.30 12.54 1,936.00 2,000.00 2,008.00 2,013.00 en 7.00 2,007.71 4.39 2,000.00 2,006.50 2,007.00 2,010.00 es

	budget			
max	count	mean	std	min
2,010.00	3.00	14,872,795.67	4,479,793.25	11,715,578.00
2,013.00	5.00	13,440,000.00	12,369,640.25	3,800,000.00
2,013.00	8.00	18,223,718.75	30,623,544.47	1,530,000.00
2,017.00	1,891.00	56,637,200.97	53,394,829.52	1.00
2,014.00	5.00	7,500,000.00	8,046,738.47	1,500,000.00
	max 2,010.00 2,013.00 2,013.00 2,017.00 2,014.00	budget max count 2,010.00 3.00 2,013.00 5.00 2,013.00 8.00 2,017.00 1,891.00 2,014.00 5.00	budget maxmean2,010.003.0014,872,795.672,013.005.0013,440,000.002,013.008.0018,223,718.752,017.001,891.0056,637,200.972,014.005.007,500,000.00	budgetmaxcountmeanstd2,010.003.0014,872,795.674,479,793.252,013.005.0013,440,000.0012,369,640.252,013.008.0018,223,718.7530,623,544.472,017.001,891.0056,637,200.9753,394,829.522,014.005.007,500,000.008,046,738.47

١

	25%	50%	75%	max
original_language				
cn	12,309,193.50	12,902,809.00	16,451,404.50	20,000,000.00
da	7,400,000.00	10,000,000.00	11,000,000.00	35,000,000.00
de	4,100,000.00	6,250,000.00	15,084,937.50	92,620,000.00
en	18,000,000.00	40,000,000.00	80,000,000.00	380,000,000.00
es	2,000,000.00	2,000,000.00	13,000,000.00	19,000,000.00

1.12 Summary

We have seen several summary statistics:

- mean, median, mode
- percentiles, quantiles, quartiles
- min, max, interquartile range, variance, standard deviation
- Pearson and Spearman correlation

Visualization:

- boxplot
- scatter plots with regression lines
- pairplot

Pandas:

- functions for computing statistics, describe
- groupby
- next week: more Pandas

More details in a statistics course.

1 Lecture 5: Advanced Pandas

Data Visualization · 1-DAV-105

Lecture by Broňa Brejová

As usual, we start by importing libraries. We also import the country data set from World Bank https://databank.worldbank.org/home under CC BY 4.0 license (see Lecture 03b).

```
[1]: import numpy as np
import pandas as pd
from IPython.display import Markdown
import matplotlib.pyplot as plt
import seaborn as sns
pd.options.display.float_format = '{:,.2f}'.format
```

```
[2]: url = 'https://bbrejova.github.io/viz/data/World_bank.csv'
    countries = pd.read_csv(url).set_index('Country')
```

1.1 Hierarchical index (MultiIndex)

1.1.1 A small example table

To illustrate a hierarchical index, we first create a very small table consisting of two countries and their population in two years, and convert this table from wide to long format.

```
[3]: example countries = countries.loc[["Slovak Republic", "Austria"],
```

A small subset of countries table:

Population2010Population2020Country5,391,428.005,458,827.00Austria8,363,404.008,916,864.00

Changed to long format:

		Country	Year	Population
0	Slovak	Republic	2010	5,391,428.00
1		Austria	2010	8,363,404.00

Slovak Republic 2020 5,458,827.00
 Austria 2020 8,916,864.00

1.1.2 An index with duplicate labels

The original wide table had country as index, but in the long table, each country can have multiple rows. Pandas still allows us to use country as index with duplicate values. Selecting the name of the country then gives us multiple rows.

Table with country as index:

	Year	Population
Country		
Slovak Republic	2010	5,391,428.00
Austria	2010	8,363,404.00
Slovak Republic	2020	5,458,827.00
Austria	2020	8,916,864.00

Selecting multiple rows using example_long_indexed.loc['Slovak Republic']:

Year Population Country Slovak Republic 2010 5,391,428.00 Slovak Republic 2020 5,458,827.00

1.1.3 Finally the hierarchical index

Our table can be more naturally indexed by a pair (country, year), which uniquely specifies a row. An index consisting of two or more levels is called hierarchical or multi-level.

- MultiIndex can be created by **set_index** with a list of columns to use as index.
- For faster operations, it is a good idea to sort the table by the index using sort_index.
- In loc use a tuple with one value per level, or only several initial levels.
- To specify other levels, use xs.

```
[5]: # create MultiIndex by choosing a list of columns
example_multiindexed = example_long.set_index(['Country', 'Year']).sort_index()
display(Markdown("**Table with a multiindex:**"), example_multiindexed)
```

Table with a multiindex:

		Population
Country	Year	
Austria	2010	8,363,404.00
	2020	8,916,864.00
Slovak Republic	2010	5,391,428.00
	2020	5,458,827.00

```
[6]: display(Markdown("**Selecting a row by using a tuple in `loc`:**"))
display(example_multiindexed.loc[('Slovak Republic', 2010)])
```

Selecting a row by using a tuple in loc:

Population 5,391,428.00 Name: (Slovak Republic, 2010), dtype: float64

Selecting all rows for a country using a shorter tuple in loc:

Population

Year 2010 5,391,428.00 2020 5,458,827.00

```
[8]: display(Markdown("**Selecting all rows for a year using `xs`:**"))
display(example_multiindexed.xs(2010, level='Year'))
```

Selecting all rows for a year using xs:

Population

Country Austria 8,363,404.00 Slovak Republic 5,391,428.00

```
[9]: display(Markdown("**Names of index levels can be used in `query`:**"))
display(example_multiindexed.query('Year > 2015'))
```

Names of index levels can be used in query:

Population

Country Year Austria 2020 8,916,864.00 Slovak Republic 2020 5,458,827.00

1.2 Combining tables

1.2.1 Concatenating tables using concat

• Function concat can be used to concatenate several tables.

- At the default settings, it combines along axis 0, meaning that the rows of second table are added after the rows of the first table.
- We will also use it for axis=1, in which case it finds rows with the same index in both tables and combines their columns.
- By default, the result has union of rows of the two tables, but intersection can be obtained by join='inner'.

Example Create a second small table of countries and display both tables. Then illustrate various concatenation modes using these tables.

The first small table:

	Population2010	Population2020
Country		
Slovak Republic	5,391,428.00	5,458,827.00
Austria	8,363,404.00	8,916,864.00

The second small table:

	Area		Region
Country			
Slovak Republic	49,030.00	Europe &	Central Asia
Austria	83,879.00	Europe &	Central Asia
Hungary	93,030.00	Europe &	Central Asia

Tables concatenated along axis 0:

	Population2010	Population2020	Area	\
Country				
Slovak Republic	5,391,428.00	5,458,827.00	NaN	
Austria	8,363,404.00	8,916,864.00	NaN	
Slovak Republic	NaN	NaN	49,030.00	
Austria	NaN	NaN	83,879.00	
Hungary	NaN	NaN	93,030.00	

Region

			NaN
			NaN
Europe	&	Central	Asia
Europe	&	Central	Asia
Europe	&	Central	Asia
	Europe Europe Europe	Europe & Europe & Europe &	Europe & Central Europe & Central Europe & Central

[12]: display(Markdown("**Tables concatenated along axis 1:**")) display(pd.concat([example_countries, example_countries2], axis=1))

Tables concatenated along axis 1:

	Population2010	Population2020	Area	\
Country				
Slovak Republic	5,391,428.00	5,458,827.00	49,030.00	
Austria	8,363,404.00	8,916,864.00	83,879.00	
Hungary	NaN	NaN	93,030.00	

Region

Country				
Slovak Republic	Europe	&	Central	Asia
Austria	Europe	&	Central	Asia
Hungary	Europe	&	Central	Asia

```
[13]: display(Markdown("**Tables concatenated along axis 1 with inner join:**"))
      display(pd.concat([example_countries, example_countries2], axis=1,___

join='inner'))
```

Tables concatenated along axis 1 with inner join:

	Population2010	Population2020	Area	\
Country				
Slovak Republic	5,391,428.00	5,458,827.00	49,030.00	
Austria	8,363,404.00	8,916,864.00	83,879.00	

Region

Country				
Slovak Republic	Europe	&	Central	Asia
Austria	Europe	&	Central	Asia

1.2.2 Merging tables with merge

- Function merge works similarly as concat with axis=1, but it will match lines of two tables using any specified columns, not necessarily index.
- If values in these columns repeat, it combines all matching pairs of rows.
- Setting how in merge allows us to include rows that do not have a matching row in the other table.

~

```
[14]: # a small example of how all combinations of matching rows are returned:
      tab1 = pd.DataFrame({'name': ['a', 'a', 'b'], 'value': [1,2,3,4]})
      tab2 = pd.DataFrame({'name': ['a', 'a', 'b'], 'value': [10,20,30]})
      display(Markdown("**DataFrame `tab1`:**"))
      display(tab1)
      display(Markdown("**DataFrame `tab2`:**"))
      display(tab2)
      display(Markdown("**Result of `pd.merge(tab1, tab2, on='name')`:**"))
```

display(pd.merge(tab1, tab2, on='name'))

DataFrame tab1:

	name	value
0	a	1
1	a	2
2	a	3
3	b	4

DataFrame tab2:

name value 0 a 10 1 a 20 2 b 30

Result of pd.merge(tab1, tab2, on='name'):

	name	value_x	value_y
0	a	1	10
1	a	1	20
2	a	2	10
3	a	2	20
4	a	3	10
5	a	3	20
6	b	4	30

Example of using merge on countries

- Countries belong to various international organizations and a single country can belong to many. We will represent this as a table having one row for each pair of country and an organization it belongs to.
- To combine this with other country data, we apply **merge** to get a table in which each country is copied for each organization it is in.
- Then we can for example compute the total number of people living in countries covered by individual organizations.

```
[15]: # we create a small membership table by parsing a CSV-format string
import io
membership_str = io.StringIO("""Country,Member
Slovak Republic,NATO
Slovak Republic,EU
Slovak Republic,UN
Austria,UN
Austria,EU
""")
membership = pd.read_csv(membership_str)
display(Markdown("**A small country membership table:**"), membership)
```

A small country membership table:

		Country	Member
0	Slovak	Republic	NATO
1	Slovak	Republic	EU
2	Slovak	Republic	UN
3		Austria	UN
4		Austria	EU

```
[16]: # merging tables using column Country in both
      example_membership = pd.merge(example_countries, membership, on='Country')
      display(Markdown("**Merged table:**"), example_membership)
```

Merged table:

		Country	Population2010	Population2020	Member
0	Slovak	Republic	5,391,428.00	5,458,827.00	NATO
1	Slovak	Republic	5,391,428.00	5,458,827.00	EU
2	Slovak	Republic	5,391,428.00	5,458,827.00	UN
3		Austria	8,363,404.00	8,916,864.00	UN
4		Austria	8,363,404.00	8,916,864.00	EU

[17]: # compute the total number of people in EU (here only for our two countries) display(example_membership.query('Member == "EU"')['Population2020'].sum())

14375691.0

As we will see in the next section, we can also use groupby to compute sums for all organizations.

[18]: display(Markdown("**The sum of country populations for each organization** ⇔(only for our two countries)")) display(example_membership.groupby('Member')['Population2020'].sum())

The sum of country populations for each organization (only for our two countries)

Member EU 14,375,691.00 5,458,827.00 NATO 14,375,691.00 UN Name: Population2020, dtype: float64

Similar operations are often done in relational databases, where merge is called join. Aggregation as in groupby is also frequently used. More in a specialized database course in the third year.

Aggregation, split-apply-combine (groupby) 1.3

We have already seen simple examples of aggregation by groupby in Lecture 04. Here we discuss it in more detail.

Pandas follow the split-apply-combine strategy introduced in R by Hadley Wickham.

Split: split data into groups, often by values in some column, such as Region in the countries table.

Apply: apply some computation on each group, obtaining some result (single value, Series, DataFrame).

Combine: concatenate results for all groups together to a new table.

Typical operations in the apply step:

- aggregation: e.g. compute group size, mean, median etc.
- **transformation**: e.g. compute percentage or rank of each item within a group
- filtering: e.g. include only groups that are large enough

In Pandas, this is done by combination of groupby for the split step and additional functions for the apply step. The combine step is done implicitly. Pandas library provides many options, we will cover only basics.

1.3.1 Simple aggregation in the apply step

Apply functions such as sum, mean, median, min, max, size, count, describe after groupby.

- size gives the number of rows in the group.
- count gives the number of non-missing values in each column.

```
[19]: display(Markdown("**The number of countries in each region:**"))
      display(countries.groupby('Region').size())
```

The number of countries in each region:

```
Region
East Asia & Pacific
                               37
Europe & Central Asia
                               58
Latin America & Caribbean
                               42
Middle East & North Africa
                               21
North America
                                3
South Asia
                                8
Sub-Saharan Africa
                               48
dtype: int64
```

```
[20]: display(Markdown("**Sums of country indicators in each region**"))
      display(Markdown(" (including nonsense sums such as life expectation or GDP per

Grapita)"
))
```

display(countries.groupby('Region').sum(numeric_only=True))

Sums of country indicators in each region

(including nonsense sums such as life expectation or GDP per capita)

	Population2000	Population2010	Population2020	\
Region				
East Asia & Pacific	2,025,976,167.00	2,187,065,378.00	2,340,350,517.00	
Europe & Central Asia	862,786,208.00	889,169,626.00	922,353,365.00	
Latin America & Caribbean	521,281,151.00	588,873,865.00	650,534,988.00	
Middle East & North Africa	321,037,455.00	397,997,552.00	479,966,650.00	

North America	312,909,973.	00 343,397	7,156.00 3	69,582,572.0	С
South Asia	1,406,945,496.	00 1,660,546	3,144.00 1,8	82,531,621.0	С
Sub-Saharan Africa	671,212,484.	00 879,797	7,424.00 1,1	51,302,077.0	С
	Area	GDP2000	GDP2010	GDP202) C
Region					
East Asia & Pacific	24,794,669.42	233,980.83	506,478.43	569,610.5	3
Europe & Central Asia	28,813,751.77	883,386.74 1	L,752,994.15	1,966,242.6	7
Latin America & Caribbean	20,523,017.36	194,902.34	462,544.16	522,816.2	С
Middle East & North Africa	11,385,553.90	172,013.59	327,153.10	293,809.5	С
North America	19,715,550.00	116,885.13	198,088.01	214,882.9	3
South Asia	5,135,270.00	5,525.87	16,479.92	21,370.6	3
Sub-Saharan Africa	24,328,265.87	43,582.79	108,587.66	96,165.8	3
	Expectancy200	0 Expectanc	cy2010 Expe	ctancy2020	١
Region					
East Asia & Pacific	2,436.6	51 2,4	154.65	2,520.88	
Europe & Central Asia	4,053.3	36 4,2	204.81	4,255.06	
Latin America & Caribbean	2,931.7	71 3,0)13.73	2,957.72	
Middle East & North Africa	1,496.9	97 1,5	557.33	1,568.09	
North America	234.6	6 2	240.36	239.79	
South Asia	511.7	70 E	546.95	568.09	
Sub-Saharan Africa	2,547.6	54 2,8	303.97	3,003.10	
	Fertility2000) Fertility2	2010 Fertil	ity2020	
Region					
East Asia & Pacific	103.92	2 91	L.58	80.30	
Europe & Central Asia	94.74	L 100	0.09	93.30	
Latin America & Caribbean	108.07	90	0.74	76.61	
Middle East & North Africa	71.54	L 59	9.86	52.64	
North America	5.31	. 5	5.28	4.45	
South Asia	31.62	2 24	1.66	19.56	
Sub-Saharan Africa	262.34	L 237	7.78	205.94	

[21]: display(Markdown("**Specifically sum only population in 2020 per region:**")) display(countries.groupby('Region')['Population2020'].sum())

Specifically sum only population in 2020 per region:

Region East Asia & Pacific 2,340,350,517.00 Europe & Central Asia 922,353,365.00 Latin America & Caribbean 650,534,988.00 Middle East & North Africa 479,966,650.00 North America 369,582,572.00 South Asia 1,882,531,621.00 1,151,302,077.00 Sub-Saharan Africa Name: Population2020, dtype: float64

1.3.2 Transformation in the apply step

Here we use transform method which get a function which is used on every group and should produce a group with the same index. We could write our own function (e.g. a lambda expression) or we can use one the built-in functions specified by a string.

Here we compute for each country what percentage is its population from the population of the region.

For each country, what is the total population of its region:

1,882,531,621.00
922,353,365.00
479,966,650.00
2,340,350,517.00
922,353,365.00
650,534,988.00
479,966,650.00
479,966,650.00
1,151,302,077.00
1,151,302,077.00
Length: 217, dtype: float64

For each country, what fraction is its population within region:

Country			
Afghanistan	0.02		
Albania	0.00		
Algeria	0.09		
American Samoa	0.00		
Andorra	0.00		
Name: Population	n2020,	dtype:	float64

~

Bellow we see an alternative form of the same computation when transformation is done via a lambda function that takes a list x of country sizes within a region and divides them by the sum of x.

The use of lambda functions applied on each element is often convenient but might be slow on large data.

For each country, what fraction is its population within region:

Country			
Afghanistan	0.02		
Albania	0.00		
Algeria	0.09		
American Samoa	0.00		
Andorra	0.00		
Name: Population	2020,	dtype:	float64

Lambda expression lambda x : x / x.sum() above is a shorthand for defining a function which gets x and returns x / x.sum(). Below we show a version with function explicitly defined.

For each country, what fraction is its population within region:

CountryAfghanistan0.02Albania0.00Algeria0.09American Samoa0.00Andorra0.00Name: Population2020, dtype: float64

```
[25]: display(Markdown("**Add back region name using concat:**"))
    pop_within_group2 = pd.concat([pop_within_group, countries['Region']], axis=1)
    display(pop_within_group2.head())
```

```
display(Markdown("**Look up value for Slovakia:**"))
display(pop_within_group2.loc["Slovak Republic"])
```

Add back region name using concat:

Population2020

Region

CountryAfghanistan0.02South AsiaAlbania0.00Europe & Central AsiaAlgeria0.09Middle East & North AfricaAmerican Samoa0.00East Asia & PacificAndorra0.00Europe & Central Asia

Look up value for Slovakia:

Population20200.01RegionEurope & Central AsiaName: Slovak Republic, dtype: object

```
[26]: display(Markdown("**Check that the sum of each region is 1:**"))
display(pop_within_group2.groupby('Region').sum())
```

Check that the sum of each region is 1:

	Population2020
Region	
East Asia & Pacific	1.00
Europe & Central Asia	1.00
Latin America & Caribbean	1.00
Middle East & North Africa	1.00
North America	1.00
South Asia	1.00
Sub-Saharan Africa	1.00

1.3.3 Filtering in the apply step

Finally, groupby can be followed by filter to use only some of the groups in the result.

~~~~

Here we report all countries in regions that have at least one billion inhabitants.

Filtered data:

|                | ISO3 | Region              | Income Group        | Population2000 | \ |
|----------------|------|---------------------|---------------------|----------------|---|
| Country        |      |                     |                     |                |   |
| Afghanistan    | AFG  | South Asia          | Low income          | 19,542,983.00  |   |
| American Samoa | ASM  | East Asia & Pacific | High income         | 58,229.00      |   |
| Angola         | AGO  | Sub-Saharan Africa  | Lower middle income | 16,394,062.00  |   |
| Australia      | AUS  | East Asia & Pacific | High income         | 19,028,802.00  |   |
| Bangladesh     | BGD  | South Asia          | Lower middle income | 129,193,327.00 |   |

|                | Population2010   | Population2020 | Area          | GDP2000 \       |
|----------------|------------------|----------------|---------------|-----------------|
| Country        |                  |                |               |                 |
| Afghanistan    | 28,189,672.00    | 38,972,231.00  | 652,860.00    | NaN             |
| American Samoa | 54,849.00        | 46,189.00      | 200.00        | NaN             |
| Angola         | 23,364,186.00    | 33,428,486.00  | 1,246,700.00  | 556.88          |
| Australia      | 22,031,750.00    | 25,649,247.00  | 7,741,220.00  | 21,870.42       |
| Bangladesh     | 148,391,139.00   | 167,420,950.00 | 147,570.00    | 413.10          |
|                | GDP2010 GDP2     | 020 Expectancy | 2000 Expectar | ncy2010 \       |
| Country        |                  |                | -             |                 |
| Afghanistan    | 562.50 512       | .06 5          | 5.30          | 60.85           |
| American Samoa | 10,446.86 15,609 | .78            | NaN           | NaN             |
| Angola         | 3,586.66 1,450   | .91 4          | 6.02          | 56.73           |
| Australia      | 52,147.02 51,868 | s.25 7         | 9.23          | 81.70           |
| Bangladesh     | 776.86 2,233     | 6.31 6         | 5.78          | 68.64           |
|                | Expectancy2020   | Fertility2000  | Fertility2010 | ) Fertility2020 |
| Country        |                  |                |               | ·               |
| Afghanistan    | 62.58            | 7.53           | 6.10          | ) 4.75          |
| American Samoa | NaN              | NaN            | Nal           | NaN NaN         |
| Angola         | 62.26            | 6.64           | 6.19          | 5.37            |
| Australia      | 83.20            | 1.76           | 1.93          | 3 1.58          |
| Bangladesh     | 71.97            | 3.22           | 2.34          | 2.00            |

Check sums in regions for selected countries:

| Region                |                  |
|-----------------------|------------------|
| East Asia & Pacific   | 2,340,350,517.00 |
| South Asia            | 1,882,531,621.00 |
| Sub-Saharan Africa    | 1,151,302,077.00 |
| Name: Population2020, | dtype: float64   |

## 1.3.4 Grouping by multiple values

Bangladesh

Function groupby can get a single column, but also a list of columns or a Series which will be used as if it was a column of the table.

[28]: display(Markdown("\*\*Populations split by both region and income group\*\*")) display(countries.groupby(['Region', "Income Group"])['Population2020'].sum())

# Populations split by both region and income group

| Region                | Income Group        |                  |
|-----------------------|---------------------|------------------|
| East Asia & Pacific   | High income         | 223,971,823.00   |
|                       | Low income          | 25,867,467.00    |
|                       | Lower middle income | 301,779,468.00   |
|                       | Upper middle income | 1,788,731,759.00 |
| Europe & Central Asia | High income         | 522,292,344.00   |
|                       | Lower middle income | 94,487,207.00    |

|                            | Upper middle | income | 305,573,814.00   |
|----------------------------|--------------|--------|------------------|
| Latin America & Caribbean  | High income  |        | 34,033,357.00    |
|                            | Lower middle | income | 40,120,621.00    |
|                            | Upper middle | income | 547,890,556.00   |
| Middle East & North Africa | High income  |        | 68,156,525.00    |
|                            | Low income   |        | 53,056,642.00    |
|                            | Lower middle | income | 304,739,289.00   |
|                            | Upper middle | income | 54,014,194.00    |
| North America              | High income  |        | 369,582,572.00   |
| South Asia                 | Low income   |        | 38,972,231.00    |
|                            | Lower middle | income | 1,843,044,952.00 |
|                            | Upper middle | income | 514,438.00       |
| Sub-Saharan Africa         | High income  |        | 98,462.00        |
|                            | Low income   |        | 549,157,331.00   |
|                            | Lower middle | income | 533,054,222.00   |
|                            | Upper middle | income | 68,992,062.00    |
|                            |              |        |                  |

```
Name: Population2020, dtype: float64
```

- Now we create a Series classifying each country as small, medium and large using cutoff 1 million for small and 100 million for medium.
- We then use this series in groupby.
- The classification is created by pd.cut function.

[29]: bin\_ends = [0, 1e6, 1e8, 1e10]

#### Country size classification:

| Country           |           |        |        |         |            |
|-------------------|-----------|--------|--------|---------|------------|
| Afghanistan       | medium    |        |        |         |            |
| Albania           | medium    |        |        |         |            |
| Algeria           | medium    |        |        |         |            |
| American Samoa    | small     |        |        |         |            |
| Andorra           | small     |        |        |         |            |
| Name: SizeCategor | y, dtype: | catego | ory    |         |            |
| Categories (3, ob | ject): [' | small' | < 'med | lium' • | < 'large'] |

Now we can use size\_groups Series in groupby.

Parameter **observed=True** is related to the fact that **size\_groups** is has a categorial variable type to be explained next.

[30]: *# now use size\_groups in groupby* 

```
display(Markdown("**The number of countries in each size group:**"))
display(countries.groupby(size_groups, observed=True).size())
display(Markdown("**The number of countries in each size group and region:**"))
```

The number of countries in each size group:

SizeCategory small 57 medium 146 large 14 dtype: int64

The number of countries in each size group and region:

| Region                     | SizeCategory |    |
|----------------------------|--------------|----|
| East Asia & Pacific        | small        | 18 |
|                            | medium       | 15 |
|                            | large        | 4  |
| Europe & Central Asia      | small        | 12 |
|                            | medium       | 45 |
|                            | large        | 1  |
| Latin America & Caribbean  | small        | 19 |
|                            | medium       | 21 |
|                            | large        | 2  |
| Middle East & North Africa | small        | 1  |
|                            | medium       | 19 |
|                            | large        | 1  |
| North America              | small        | 1  |
|                            | medium       | 1  |
|                            | large        | 1  |
| South Asia                 | small        | 2  |
|                            | medium       | 3  |
|                            | large        | 3  |
| Sub-Saharan Africa         | small        | 4  |
|                            | medium       | 42 |
|                            | large        | 2  |
|                            |              |    |

dtype: int64

# 1.4 Categorical variables

Categorical variables have values from a small set, such as region and income group in the table of countries. So far we have represented them only as strings, but we can explicitly convert them to a categorical data type in Pandas.

This has several advantages: \* Strings are internally replaced by numerical IDs within the table, potentially saving memory. \* Categories can be ordered and then sorting, minimum, maximum etc works as desired, not alphabetically. \* Pandas is aware of the full set of possible values. For example categories without members can appear in the groupby results.

**Example** Income groups in our table are strings, we will convert them to an ordered categorical variable.

```
[31]: # creating a categorical type
      cat_type = pd.api.types.CategoricalDtype(categories=["Low income",
                                                            "Lower middle income",
                                                            "Upper middle income",
                                                            "High income"],
                                               ordered=True)
      # converting Income Group column to cat_type in a new DataFrame
      countries_cat = countries.astype({'Income Group': cat_type})
      display(Markdown("**Income Group column in the old table:**"),
              countries['Income Group'].head(3))
      display(Markdown("**Income Group column in the new table:**"),
              countries_cat['Income Group'].head(3))
```

Income Group column in the old table:

Country Afghanistan Low income Albania Upper middle income Algeria Lower middle income Name: Income Group, dtype: object

Income Group column in the new table:

```
Country
Afghanistan
                         Low income
Albania
               Upper middle income
Algeria
               Lower middle income
Name: Income Group, dtype: category
Categories (4, object): ['Low income' < 'Lower middle income' < 'Upper middle_ \Box

income' < 'High income']
</pre>
```

```
[32]: display(Markdown("**Minimum and maximum income group in the table with
       ⇔categorical values:**"
                       " (manually fixed order):"))
```

```
display(countries_cat['Income Group'].min())
display(countries_cat['Income Group'].max())
```

display(Markdown("\*\*Minimum and maximum income group in the table with ⇔strings\*\*" " (alphabetical order):"))

```
display(countries['Income Group'].dropna().min())
display(countries['Income Group'].dropna().max())
```

Minimum and maximum income group in the table with categorical values: (manually fixed order):

'Low income'

'High income'
#### Minimum and maximum income group in the table with strings (alphabetical order):

'High income'

'Upper middle income'

- Note that if categories do not need a fixed order, they can be created automatically by the **astype** function as in the code below.
- Notice that groupby creates even empty groups which would not happen with strings. This is caused by observed=False setting.

```
[33]: # convert region to an unordered category
countries_cat2 = countries_cat.astype({'Region': 'category'})
# count the number of countries for each combination of income group and region
countries_cat2.groupby(['Income Group', 'Region'], observed=False).size()
```

| [33]: | Income Group   |        | Region                     |    |
|-------|----------------|--------|----------------------------|----|
|       | Low income     |        | East Asia & Pacific        | 1  |
|       |                |        | Europe & Central Asia      | 0  |
|       |                |        | Latin America & Caribbean  | 0  |
|       |                |        | Middle East & North Africa | 2  |
|       |                |        | North America              | 0  |
|       |                |        | South Asia                 | 1  |
|       |                |        | Sub-Saharan Africa         | 22 |
|       | Lower middle i | income | East Asia & Pacific        | 13 |
|       |                |        | Europe & Central Asia      | 4  |
|       |                |        | Latin America & Caribbean  | 4  |
|       |                |        | Middle East & North Africa | 8  |
|       |                |        | North America              | 0  |
|       |                |        | South Asia                 | 6  |
|       |                |        | Sub-Saharan Africa         | 19 |
|       | Upper middle i | income | East Asia & Pacific        | 9  |
|       |                |        | Europe & Central Asia      | 16 |
|       |                |        | Latin America & Caribbean  | 19 |
|       |                |        | Middle East & North Africa | 3  |
|       |                |        | North America              | 0  |
|       |                |        | South Asia                 | 1  |
|       |                |        | Sub-Saharan Africa         | 6  |
|       | High income    |        | East Asia & Pacific        | 14 |
|       |                |        | Europe & Central Asia      | 38 |
|       |                |        | Latin America & Caribbean  | 18 |
|       |                |        | Middle East & North Africa | 8  |
|       |                |        | North America              | 3  |
|       |                |        | South Asia                 | 0  |
|       |                |        | Sub-Saharan Africa         | 1  |
|       | 1              |        |                            |    |

dtype: int64

#### 1.5 Dates and times

An important type of data sets are time series, where some variables are measured repeatedly over time. Pandas has an extensive support for work with times and dates. Here we show only a small example.

- We illustrate this on the movie dataset from Kaggle (see lecture 04).
- The column labeled release\_date is recognized as date by passing parse\_dates parameter to read\_csv.
- Then we call function day\_name() to get the day of week for each release day and use value\_counts to see which days are most frequent as movie release dates.
- We also use the release date as the x-coordinate in a scatterplot.

```
[34]: # import data, including parsing of dates
url = 'https://bbrejova.github.io/viz/data/Movies_small.csv'
movies = pd.read_csv(url, parse_dates=['release_date'])
# get days of week for realse dates
days = movies['release_date'].apply(lambda x : x.day_name())
days.value_counts()
```

[34]: release\_date

| Friday       | 639    |       |  |  |
|--------------|--------|-------|--|--|
| Thursday     | 515    |       |  |  |
| Wednesday    | 474    |       |  |  |
| Tuesday      | 175    |       |  |  |
| Saturday     | 94     |       |  |  |
| Monday       | 87     |       |  |  |
| Sunday       | 65     |       |  |  |
| Name: count, | dtype: | int64 |  |  |

```
[35]: # use release date is x-coordinate
sns.scatterplot(data=movies, x='release_date', y='budget')
pass
```



#### 1.6 Missing values

Data sets are often incomplete, and Pandas provides techniques for working with missing data.

- Missing data are typically imported as np.nan (not-a-number).
- These cannot occur in int-type columns, so ints are converted to floats, but can be handled in a special way.

Bellow we show a small example what happens when working with missing data, including functions isna, dropna, fillna.

```
[36]: # create a small series with one missing value
      a = pd.Series([1, 2, np.nan, 3])
      display(Markdown("**`a.sum()` skips missing values:**"),
              a.sum())
      display(Markdown("**`a.count()` counts non-missing values:**"),
              a.count())
      display(Markdown("**`a.mean()` also considers only non-missing:**"),
              a.mean())
      display(Markdown("**`a > 2` evaluates missing values as `False`, similarly `<`,u
       `==`:**"),
              a > 2)
      display(Markdown("**`a == np.nan` also evaluates as `False`:**"),
              a == np.nan)
      display(Markdown("**`a.isna()` can be used to detect missing values:**"),
              a.isna())
      display(Markdown("**`a.dropna()` omits missing values:**"),
              a.dropna())
      display(Markdown("**`a.fillna(-1)` replaces them with a specified value:**"),
```

```
a.fillna(-1))
```

a.sum() skips missing values: 6.0 a.count() counts non-missing values: 3 a.mean() also considers only non-missing: 2.0 a > 2 evaluates missing values as False, similarly <, ==: 0 False False 1 2 False True З dtype: bool a == np.nan also evaluates as False: 0 False 1 False 2 False 3 False dtype: bool a.isna() can be used to detect missing values: 0 False False 1 2 True З False dtype: bool a.dropna() omits missing values: 0 1.00

1 2.00 3 3.00 dtype: float64

a.fillna(-1) replaces them with a specified value:

0 1.00 1 2.00 2 -1.00 3 3.00 dtype: float64

#### 1.7 Pandas efficiency

Below we show several examples how different ways of implementing the same operation can have very different running time on large data. Pandas functions are usually much faster than manual iteration. However, if you do not work on huge data sets, the difference is not so important.

To measure time, we use a special Jupyter command **%timeit**. \* It runs the code several times to estimate the time per one repeat.

```
[37]: # generate a Series of million random numbers and also convert it to Python list
length = int(1e6)
xs = pd.Series(np.random.uniform(0,100, length))
xl = list(xs)
```

Below we see that method sum() on Series is faster than Python built-in sum on a Python list, but Python built-in sum on Series is much slower, because it iterates over elements of Series.

```
[38]: display(Markdown("**Method `sum` on `Series` `xs.sum()`:**"))
%timeit result = xs.sum()
display(Markdown("**Python `sum` on Python list `sum(xl)`:**"))
%timeit result = sum(xl)
display(Markdown("**Python `sum` on Series `sum(xs)`:**"))
%timeit result = sum(xs)
```

Method sum on Series xs.sum():

```
1.12 ms ± 104 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
```

Python sum on Python list sum(x1):

 $6.77 \text{ ms} \pm 401 \text{ } \mu \text{s} \text{ per loop}$  (mean  $\pm \text{ std.}$  dev. of 7 runs, 100 loops each)

Python sum on Series sum(xs):

58.3 ms  $\pm$  351 µs per loop (mean  $\pm$  std. dev. of 7 runs, 10 loops each)

Below we compare three ways of generating a sequence of squared values. Multiplying Series with **\*** is the fastest, Python list comprehension is much slower and **apply** function from Pandas is even slower.

Pandas Series multiplication x2s = xs \* xs:

1.67 ms  $\pm$  50.2 µs per loop (mean  $\pm$  std. dev. of 7 runs, 1,000 loops each)

Python list comprehension on a list x21 = [x \* x for x in x1]: 53.6 ms ± 6.34 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) Pandas apply function x2s = xs.apply(lambda x : x \* x) 234 ms ± 12.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The code below creates the Series of squares by creating a Series filled with zeroes and then assigning individual values using for-loop. This is again much slower than all methods above, so to make the code reasonably fast, we run it on data which is 100 times smaller than above.

```
[40]: length2 = 10000
xs_small = xs.iloc[0:length2]
def assignments(len, x):
    x2 = pd.Series([0.0] * len)
    for i in range(len):
        x2[i] = x[i] * x[i]
    return x2
%timeit x2s_small = assignments(length2, xs_small)
```

173 ms  $\pm$  1.02 ms per loop (mean  $\pm$  std. dev. of 7 runs, 10 loops each)

Finally the code below is even worse. It appends individual squares to a Series which starts with size 1. We run it on even smaller list of size 1000.

```
[41]: length3 = 1000
xs_tiny = xs.iloc[0:length3]
def assignments(len, x):
    x2 = pd.Series([0.0])
    for i in range(len):
        x2[i] = x[i] * x[i]
    return x2
%timeit x2s_tiny = assignments(length3, xs_tiny)
```

286 ms ± 16 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

# Lecture 6 Maps, graphs, time series

<u>Data visualization · 1-DAV-105</u> Lecture by Broňa Brejová More details in the <u>notebook version</u>

# Part I: Maps

#### Maps

Each map is a visualization of data about location of objects.

Conventions about colors and symbols, orientation etc. allow us to quickly understand a map.

#### **Example:**

A topographic map from US



# Data visualization in maps

**Thematic maps (tematické mapy)** visualize data other than typical geographical features

Recall Snow's map of cholera cases (1854)

Additional examples: <u>Wikipedia</u>, <u>GeoPlot</u> <u>library gallery</u>.



## Map projection (kartografické zobrazenie)

A transformation to project the surface of a globe onto a plane

Each projection introduces some distortion

**Conformal projections** preserve local angles, but distort other aspects, such as lengths, areas etc.

For example, **Mercator projection** (1569) developed for navigation, but shows Greenland bigger than Africa, while in fact it is 14x smaller.



# Map projection (kartografické zobrazenie)

Equal-area projections preserve areas (cannot be conformal at the same time).

These are typically good for data visualization, as they make areas comparable.



Example: **Mollweide** equal-area projection (1805)

# Map projection (kartografické zobrazenie)

**Orthographic projection** is similar to a photograph of the Earth from a very distant point.

It is not an equal-area projection, but our sense of perspective may compensate.

It displays one hemisphere.



# Recommended projections (Cairo, The Truthful Art)

Whole world: e.g. Mollweide equal-area projection (1805)Continents / large countries: e.g. Lambert azimuthal equal-area projection (1772)

**Countries in mid-latitudes:** e.g. Albers equal-area conic projection (1805) **Polar regions:** e.g. Lambert azimuthal equal-area projection (1772)



Mollweide



# **Projection examples in Plotly**

```
def show world(projection, scope=None):
 # create a map figure with an empty scatterplot
 fig = go.Figure(go.Scattergeo())
 # set the desired projection
 fig.update geos(projection type=projection)
 # we can also limit the scope of the map
 if scope is not None:
   fig.update geos(scope=scope)
 # finally, make the image smaller and with 0 margins
 fig.update layout(height=200,
                    margin={"r":0,"t":0,"l":0,"b":0})
 # show the figure
 fig.show()
```

show\_world("azimuthal equal area", "europe")



### Adding data as points and lines to a map

Geographic coordinates of places can be projected as x and y. Additional values can be shown using marker color / size or line color / width.

Example: airport locations in Europe and airline connections from Slovakia.



## Our airport dataset

- The dataset of 2173 international airports of the world from the World Bank under the CC-BY 4.0 license, and preprocessed.
- For each airport its 3-letter code, name, country, 3-letter code of the country, the number of airplane seats per year (from unknown years) and the location.
- Stored in GeoJSON format.
- We parse the file using **GeoPandas** library for working with geographical data.
- It is an extension of Pandas DataFrame, with location information.

# Importing airports in GeoPandas

import geopandas as gpd
airports = gpd.read\_file("https://bbrejova.github.io/viz/data/airports.geojson")
display(airports.query('Country == "Slovakia"'))

|      | 0rig | Name             | TotalSeats  | Country  | <b>IS03</b> | geometry                  |
|------|------|------------------|-------------|----------|-------------|---------------------------|
| 1489 | BTS  | M.R. Stefanik    | 1211732.116 | Slovakia | SVK         | POINT (17.21670 48.16670) |
| 1490 | ILZ  | Zilina           | 3986.360    | Slovakia | SVK         | POINT (18.76670 49.23330) |
| 1491 | KSC  | Barca            | 323259.132  | Slovakia | SVK         | POINT (21.25000 48.66670) |
| 1492 | PZY  | Piestany Airport | 1403.892    | Slovakia | SVK         | POINT (17.83330 48.63330) |
| 1493 | SLD  | Sliac            | 11876.753   | Slovakia | SVK         | POINT (19.13330 48.63330) |
| 1494 | TAT  | Tatry/Poprad     | 39612.286   | Slovakia | SVK         | POINT (20.24030 49.07190) |

## Drawing airport bubble graph in Plotly

```
fig = px.scatter geo(
    airports,
    lat=airports.geometry.y,
    lon=airports.geometry.x,
    size="TotalSeats",
    hover name="Name"
fig.update geos(
    projection type="azimuthal equal area",
    lonaxis range= [-20, 40],
    lataxis range= [20, 70],
    showcountries = True
```

```
Interactive plot:
zooming, panning,
tooltips
```

```
fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
fig.show()
```

## Importing airport connections in GeoPandas

connections = gpd.read\_file("https://bbrejova.github.io/viz/data/airport\_pairs\_svk.geojson")
display(connections.head())

|   | <b>OrigCode</b> | DestCode | TotalSeats | geometry                                          |
|---|-----------------|----------|------------|---------------------------------------------------|
| 0 | BTS             | ADB      | 7370.433   | LINESTRING (17.21670 48.16670, 27.15620 38.29430) |
| 1 | BTS             | AGP      | 15152.501  | LINESTRING (17.21670 48.16670, -4.49810 36.67170) |
| 2 | BTS             | AHO      | 14740.866  | LINESTRING (17.21670 48.16670, 8.28890 40.63060)  |
| 3 | BTS             | AQJ      | 3275.748   | LINESTRING (17.21670 48.16670, 35.01940 29.61250) |
| 4 | BTS             | ATH      | 19654.488  | LINESTRING (17.21670 48.16670, 23.94440 37.93640) |

#### Drawing airline connections in Plotly

```
lats = []
lons = []
origCodes = []
for index, row in connections.iterrows():
    x, y = row['geometry'].xy
    lats.extend(list(y) + [None])
    lons.extend(list(x) + [None])
    origCodes.extend([row['OrigCode']] * len(x) + [None])
    destCodes.extend([row['DestCode']] * len(x) + [None])
```



```
fig = px.line_geo(lat=lats, lon=lons, hover_name=destCodes, color=origCodes)
fig.update_geos(
    projection_type="azimuthal equal area",
    lonaxis_range= [-25, 55],
    lataxis_range= [10, 60],
    showcountries = True
)
fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
fig.show()
```

# Displaying variables that vary over space

Elevation can be measured at any point on land. How is it visualized on geographic maps?

#### Displaying variables that vary over space

Elevation can be measured at any point on land. How is it visualized on geographic maps?



https://en.wikipedia.org/wiki/Map#/media/File:Topographic map example.png

# Isarithmic maps / isoline maps / heatmaps

Display a continuous variable over the map area (elevation, temperature etc.)

Value in each point can be shown by a color scale. Some contour lines can be displayed as well.

A **contour line** (isoline, isopleth, isarithm, izočiara) connects points of the same value.

**Example:** short-term forecasts from the Slovak Hydrometeorological Institute.

https://www.shmu.sk/sk/?page=1&id=meteo\_inca\_base



#### Density of airports as a isarithmic map

We use kdeplot function from the Geoplot library. KDE stands for kernel density estimation (next lecture).



# Density of airports in Geoplot library

```
import geoplot as gplt
# plot countries as a background
ax = qplt.polyplot(
    countries.explode(index parts=True),
    edgecolor='white',
    facecolor='darkgray',
    figsize=(10, 5),
# plot semi-transparent isarithmic map
gplt.kdeplot(
    airports, cmap='viridis',
    fill=True, alpha=0.5, ax=ax
# plot points on top
qplt.pointplot(airports, s=1, color='black', ax=ax
pass
```



# Choropleth maps (kartogramy)

These show numerical / categorical values for administrative regions (countries, districts, etc.) via colors applied to the whole region. Example: The number of airports in a country per 10000 km<sup>2</sup>



# Types of variables over regions

**Spatially extensive:** apply to the unit as a whole. If we subdivide the region, spatially extensive variable will be often the sum of its parts. Examples: total population, area, the number of airports in the country

**Spatially intensive:** may stay the same if you divide the unit, provided the unit is homogeneous without regional differences.

Examples: population density, life expectancy, GDP per person.

Spatially extensive variables are not appropriate for choropleths (large value for a large country is visually attributed to each small subregion)

#### Computing airport stats per country in GeoPandas

```
# compute the number of airports per country by groupby
airports per country = airports.groupby('ISO3').size()
# add the new column to a copy of the old table
countries2 = countries.copy(deep=True)
countries2['Airports'] = airports per country
# remove countries where airports or location are missing
countries2.dropna(subset=['geometry', 'Airports'], inplace=True)
# add columns with airport density and airports per million people
countries2['Airport density'] = (countries2['Airports']
                                 / countries2['Area'] * 10000)
countries2['Airports per mil'] = (countries2['Airports']
                                 / countries2['Population'] * 1e6)
display(countries2.loc['SVK'])
```

# Computing airport stats per country in GeoPandas

Sovereign country Type Name Slovakia Population 5454073.0 Region Europe & Central Asia POLYGON ((22.558137648211755 49.08573802346714... geometry Area 47069.779734 6.0 Airports Airport density 1.274703 Airports per mil 1.100095 Name: SVK, dtype: object

# Drawing choropleth map in Plotly

```
def draw_choropleth(data, column, range_color=None, label=None):
    fig = px.choropleth(
        data, locations=data.index, color=column,
        range_color=range_color,
        labels={column:label},
        hover_name="Name",
        projection = "mollweide"
    )
    fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
    fig.show()
```

display(Markdown("\*\*The number of airports per 10000 squared km\*\*"))
draw\_choropleth(countries2, 'Airport\_density', (0, 2), 'airports / 10000 km2')

#### Another intensive variable

display(Markdown("\*\*The number of airports per million inhabitans\*\*"))
draw\_choropleth(countries2, 'Airports\_per\_mil', (0, 5), 'airports / million people')

#### The number of airports per million inhabitans



## The number of airports is extensive (not good)

display(Markdown("\*\*The number of airports in a country\*\*"))
draw\_choropleth(countries2, 'Airports', (0, 100), 'airports')

The number of airports in a country



#### The number of airports as a bubble plot (better)



# Cartogram vs kartogram

A choropleth map is called kartogram in Slovak.

In English, cartogram is a map with regions rescaled according to some variable Examples: World's Catholic Population by World Mapper Levasseur's cartogram of country budgets





https://commons.wikimedia.org/wiki/File:Levasseur\_cartogram.png

https://worldmapper.org/maps/catholic-population-2005/

# Summary of maps

- Many data sets contain geographic entities (countries, cities, coordinates)
- Displaying such data on maps shows spatial relationships
- Use appropriate equal-area projections
- Bubble plots: add points of various sizes
- Isarithmic maps / isoline maps / heatmaps: continuously varying variables
- Choropleth map: variables characterizing whole region
  - The variable should be intensive, e.g. normalized by area or population

Several useful libraries

- Geopandas for working with geographical data, extension of DataFrame
- Geoplot and Plotly for visualization
# Part II: Graphs / networks

# Graph / network

Vertices (vrcholy; also nodes, uzly) often real-world entities

**Edges** (hrany; also links, arcs) often relationships / connections between pairs of vertices

#### Many real-world examples:

places connected by roads, computers connected by network cables, people connected by family or work relationships, companies connected by financial transactions, texts connected by references, tasks or courses connected by dependencies,

any objects connected based on similarity / shared features, ...

Graphs are very important in both computer science and data science.

## Example: dependencies between DAV courses



# Graph / network (cont.)

Edges: Directed (orientované) or undirected (for symmetric relationships) Recall: how did you define directed / undirected edges in discrete mathematics?

Graphs are covered in several courses: discrete mathematics, programming, design of efficient algorithms, network science.

## Trees

An undirected graph is called a tree if it is connected and without cycles.

In practice we usually encounter rooted (directed) trees,

which have a single root, all other vertices can be reached from the root via a unique path.

Creates parent / child relationships between nodes



# **Trees and hierarchies**

Trees can express hierarchies in which each entity has a single direct superior Examples:

Company structure in which each employee (except for the head of the company) has a single supervisor (similarly army command)

Administrative divisions (country, region, district)

Species taxonomy (animals, mammals, primates, ...)



# More general hierarchies

Some hierarchies allow multiple direct superiors, for example:

- family tree where each person has two parents (and they may be distantly related),
- geometrical shapes, where a square is both a special case of a regular polygon and a special case of a rectangle and both of these are a special case of a polygon.

These hierarchies can be represented as directed acyclic graphs

• Acyclic means that by following edges we never get back to the starting node (nobody is their own ancestor).

# What to study / visualize in real-life graphs?

Details of connections for a particular node (requires zooming in large networks).

Overall structure of the graph: connected components, density of edges, presence of cycles, weak places (bridges and articulations), densely connected clusters

Do nodes with some property cluster together? (Are they connected by many edges?)

Example: character co-occurrence in Shakespeare



ROMEO AND JULIET Number of 41 37% Network characters

# Basics of graph drawing

Vertices typically shown as markers (circles, rectangles etc.), possibly with labels, size, color, ...

Edges shown as lines connecting them, possibly of different color or width. They can be straight lines, arcs, polygonal lines or arbitrary curves.

Edge direction displayed as arrows or all edges drawn to point in one direction, e.g. downwards.



# Desirable properties of a graph drawing

Nodes do not overlap.

Edges are not too long and have a simple shape without many bends.

The number of edge crossings is small.

The graph uses the space of the figure well without large empty regions.



https://commons.wikimedia.org/wiki/File:UnitedStatesGraphViz.svg

# Node positioning in graph drawing

Sometimes the position of nodes is given by their properties, e.g. on a map (airline connections), level of a hierarchy, timeline.

Otherwise we place nodes to optimize desirable properties, e.g. using **force-directed layout**, which assigns attractive forces (springs) between nodes connected by edges and repulsive forces between other pairs of nodes.



# Our hierarchy: manually created DataFrame of animals

Taxonomy of even-toed ungulates (párnokopytníky)

Level along tree (1=leaves, 6=root)

Category: land / sea / group

|    | name          | parent        | level | category |
|----|---------------|---------------|-------|----------|
| 0  | camel         | Artiodactyla  | 1     | land     |
| 1  | pig           | Artiofabula   | 1     | land     |
| 2  | sheep         | Caprinae      | 1     | land     |
| 3  | goat          | Caprinae      | 1     | land     |
| 4  | cow           | Bovidae       | 1     | land     |
| 5  | dolphin       | Cetacea       | 1     | sea      |
| 6  | whale         | Cetacea       | 1     | sea      |
| 7  | hippopotamus  | Whippomorpha  | 1     | land     |
| 8  | Caprinae      | Bovidae       | 2     | group    |
| 9  | Cetacea       | Whippomorpha  | 2     | group    |
| 10 | Bovidae       | Cetruminantia | 3     | group    |
| 11 | Whippomorpha  | Cetruminantia | 3     | group    |
| 12 | Cetruminantia | Artiofabula   | 4     | group    |
| 13 | Artiofabula   | Artiodactyla  | 5     | group    |
| 14 | Artiodactyla  | NaN           | 6     | group    |

## NetworkX: library for working with graphs

```
# create empty graph in NetworkX
G = nx.Graph()
```

```
# adding each table row as a node
for index, row in animals.iterrows():
   G.add_node(row['name'], level=row['level'],
        category=row['category'])
```

```
# adding an edge to each node from its parent
for index, row in animals.iterrows():
    if row['parent'] is not np.nan:
        G.add_edge(row['parent'], row['name'])
```

# Basic graph drawing in NetworkX



# Improving the plot

```
# plot edges only, omit nodes for now
(figure, axes) = plt.subplots(figsize=(10, 6))
nx.draw_networkx_edges(G, coordinates2, ax=axes)
```



# Hierarchy as a treemap in Plotly Express

```
import plotly.express as px
fig = px.treemap(
    names=animals['name'],
    parents=animals['parent'],
    color=animals['category'],
    color_discrete_map=color_dict
```

```
fig.show()
```

| Artiodactyla  |     |              |              |  |                   |
|---------------|-----|--------------|--------------|--|-------------------|
| Artiofabula   |     | camel        |              |  |                   |
| Cetruminantia | pig | label=pig    |              |  |                   |
| Bovidae       |     | Whippomorpha | Whippomorpha |  | per one variabala |
| Caprinae      | cow | Cetacea      | hippopotamus |  |                   |
| sheep         |     | dolphin      |              |  |                   |
| goat          |     | whale        |              |  |                   |

# Interactive graphs in Pyvis

- Example from NetworkX: character co-occurrence in Les Misérables by Victor Hugo.
- Edges weighted by frequency





```
# get a dictionary of neighbors for each node
neighbors = pyvis_net.get_adj_list()
# add additional node properties
# used as tooltip and size
for node in pyvis_net.nodes:
    node["title"] = node["id"]
    node["value"] = len(neighbors[node["id"]])
```

```
# saving the visualization in an html file
pyvis_net.show("net.html")
# displaying the html file in the notebook
from IPython.display import display, HTML
display(HTML('net.html'))
```

# Summary of graphs

- Graphs important in **many applications**
- **NetworkX** library has many functions for working with graphs, several layout algorithms for visualization
- **Pyvis** allows interactive visualization
- **Plotly** can visualize trees as **treemaps**

# Part III: Time series

# Time series (časové rady)

Sequences of measurements over time (regular or irregular time intervals).

Typically displayed as a **line graph**, with time as x-axis, time flowing from left to right (a cultural convention in western countries).

Other options: bar graphs, heat maps, box plots, ...



# Typical features of a time series

Overall trend (increasing / decreasing / flat; rate of change),

Seasonality (daily / weekly / yearly cycles),

Noise (general variability / outliers)

# Two Google trend time series

<u>Google trends</u> compare frequency of search terms over time and to each other.

Here we use Christmas-related terms kapustnica and kapor.

```
display(trends1.head())
            kapustnica kapor
      week
 2019-01-06
                      3
                             15
                      2
                             14
2019-01-13
 2019-01-20
                      3
                             17
                      2
2019-01-27
                             18
                      2
2019-02-03
                             13
```

What can we see on the plot? (trend, seasonality, noise)

Comparison of the two terms?



```
axes = sns.lineplot(trends1, dashes=False)
axes.set_ylabel("Frequency of the term (weekly values)")
axes.set_title("Google trends for two search terms")
# rotate tick labels
axes.tick params(axis='x', labelrotation = 45)
```

Search terms related to kapor: zbgis kataster, zbgis mapa, zgbis, katasterportal list vlastnictva, dážďovka.



## Trend: temperatures are growing in spring

Second dataset:

Maximum daily temperature values from Piešťany January-June 2010, from US National Oceanic and Atmospheric Administration



# Smoothing data (vyrovnanie, vyhladenie)

Our time series are quite noisy.

Two options for **smoothing data:** 





Aggregating them in longer time intervals (e.g. months).

**Sliding window** (kĺzavé okno): we choose a window size *w* and compute a new series, each value being mean or other summary of *w* consecutive windows in the input.

For example with values 2,6,4,2,8,2 and window size 4, we get window means 3.5, 5, 4.

## Smoothing Google trends by monthly aggregation



## Smoothing temperatures by sliding window



# Overlapping timescales to display seasonality / showing uncertainty



Right: multiple years summarized as the mean and its 95% confidence interval expressing uncertainty in the true value of the mean due to noise in data.

## Importance of scales



## Importance of scales



## **Relative scales**



Right: monthly values relative to January (can be used to compare trends even if overall values vary different)

## One more pair of Google trend lines



# Acknowledging missing values



Middle and right: values for 2010 and 2011 missing Middle: missing values are not visible, misleading plot Right: missing values are easy to spot

# Summary of time series

Typical goals are to observe and study:

- overall trend (increasing / decreasing / flat; rate of change),
- seasonality (daily / weekly / yearly cycles),
- noise (general variability / outliers)

Useful techniques:

- smoothing by aggregation and sliding window
- overlapping timescales
- relative scales
- showing uncertainty and missing values
# 1 Lecture 6: Maps, graphs, time series

Data Visualization  $\,\cdot\,$  1-DAV-105

Lecture by Broňa Brejová

## 1.1 Package installation

We need to install several packages which are not pre-installed in Colab.

```
[1]: ! pip install geoplot pyvis
```

```
[2]: # importing our usual libraries
     import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     import plotly.express as px
     from IPython.display import Markdown
     # new libraries for today:
     # geopandas is a library for working with geographical data
     import geopandas as gpd
     # geoplot is a library for visualizing geographical data
     import geoplot as gplt
     # we also will use a submodule of plotly
     import plotly.graph_objects as go
     # networkx is a library for working with graphs and networks
     import networkx as nx
     # Pyvis is a library for drawing networks
     from pyvis.network import Network
```

## 1.2 Maps

#### 1.2.1 Introduction

- Each map is a visualization of data about location of objects.
- Maps have a rich set of conventions about colors and symbols, orientation etc. This allows us to quickly understand a map.

Examples:

- A topographic map from US looks similar to maps used in Slovakia, but striped lines are typically used for railroads in Slovakia (example).
- A map of European countries from 1721 can still be easily read by today's audience.

Data visualization in maps

• Maps visualizing data other than typical geographical features are usually called thematic maps (tematické mapy).

- We will see several examples, for others see e.g. Wikipedia, GeoPlot library gallery.
- Also recall Snow's map of cholera cases from the first lecture.

## 1.2.2 Map projection (kartografické zobrazenie)

- A map projection is a transformation to project the surface of a globe onto a plane.
- Each projection introduces **some distortion**.

**Conformal projections** preserve local angles, but distort other aspects, such as lengths, areas etc.

• For example, Mercator projection (1569) was developed for navigation, but shows Greenland bigger than Africa, while in fact it is 14x smaller.

Equal-area projections preserve areas (cannot be conformal at the same time).

• Equal-area projections are typically good for data visualization, as they make areas comparable.

Orthographic projection is similar to a photograph of the Earth from a very distant point.

- It is not an equal-area projection, but our sense of perspective may compensate.
- It displays one hemisphere.

Recommended projections (Cairo, The Truthful Art):

- Whole world: e.g. Mollweide equal-area projection (1805)
- Continents / large countries: e.g. Lambert azimuthal equal-area projection (1772)
- Countries in mid-latitudes: e.g. Albers equal-area conic projection (1805)
- Polar regions: e.g. Lambert azimuthal equal-area projection (1772)

## Examples of projections in Plotly

- Plotly allows us to set projections for our plot. Here we use it to illustrate the projections on the map of continent outlines.
- The maps are interactive.

```
[3]: def show_world(projection, scope=None):
```

```
"""A function to display the whole Earth or a desired
area (scope) using a selected projection. Both arguments
are strings that name projections or scopes supported by Plotly."""
# create a map figure with an empty scatterplot
fig = go.Figure(go.Scattergeo())
# set the desired projection
fig.update_geos(projection_type=projection)
# we can also limit the scope of the map
if scope is not None:
    fig.update_geos(scope=scope)
# finally, make the image smaller and with 0 margins
fig.update_layout(height=200, margin={"r":0,"t":0,"l":0,"b":0})
# show the figure
fig.show()
```

[4]: display(Markdown("\*\*Orthographic projection\*\*"))
 show\_world("orthographic")

## Orthographic projection

```
[5]: display(Markdown("**Mollweide equal-area projection**"))
    show_world("mollweide")
```

#### Mollweide equal-area projection

Mercator conformal projection (not recommended for data visualization)

```
[7]: display(Markdown("**Lambert azimuthal equal-area projection**"))
    show_world("azimuthal equal area", "europe")
```

#### Lambert azimuthal equal-area projection

#### 1.2.3 Adding data as points and lines to a map

- Geographic coordinates of places can be projected as x and y. Additional values can be shown using marker color and size or line color and width.
- We illustrate this using datasets of airport locations and airline connections.

#### Importing datasets

- The dataset of international airports of the world was downloaded from the World Bank under the CC-BY 4.0 license, and preprocessed. It includes the number of seats within a year, which is from unknown years, possibly not comparable between countries.
- Our preprocessed file is in GeoJSON format used for describing simple geographical features. It contains both location data and other attributes.
- We parse the file using GeoPandas, which is a library for working with geographical data.
- It is an extension of Pandas DataFrame, with location information.
- Each row of the table contains one airport, with its 3-letter code, name, country, 3-letter code of the country, the number of airplane seats per year and the location.

```
[8]: display(Markdown("**Importing the list of airports**"))
# parse the file
airports = gpd.read_file("https://bbrejova.github.io/viz/data/airports.geojson")
# show the first 5 rows
display(Markdown("**The first five rows:**"), airports.head())
# show the total number of rows
display(Markdown(f"**The number of rows:** {airports.shape[0]}"))
display(Markdown("**International airports in Slovakia**"))
display(airports.query('Country == "Slovakia"'))
```

#### Importing the list of airports

The first five rows:

|   | Orig | Name                   | TotalSeats  | Country     | ISO3 | \ |
|---|------|------------------------|-------------|-------------|------|---|
| 0 | HEA  | Herat                  | 22041.971   | Afghanistan | AFG  |   |
| 1 | JAA  | Jalalabad              | 6343.512    | Afghanistan | AFG  |   |
| 2 | KBL  | Kabul International    | 1016196.825 | Afghanistan | AFG  |   |
| 3 | KDH  | Kandahar International | 39924.262   | Afghanistan | AFG  |   |
| 4 | MZR  | Mazar-e-Sharif         | 58326.513   | Afghanistan | AFG  |   |
|   |      |                        |             |             |      |   |

```
geometry

0 POINT (62.22670 34.20690)

1 POINT (70.50000 34.40000)

2 POINT (69.21390 34.56390)

3 POINT (65.84750 31.50690)

4 POINT (67.20830 36.70420)
```

The number of rows: 2173

International airports in Slovakia

|      | Orig | Name             | TotalSeats  | Country  | ISO3 | \ |
|------|------|------------------|-------------|----------|------|---|
| 1489 | BTS  | M.R. Stefanik    | 1211732.116 | Slovakia | SVK  |   |
| 1490 | ILZ  | Zilina           | 3986.360    | Slovakia | SVK  |   |
| 1491 | KSC  | Barca            | 323259.132  | Slovakia | SVK  |   |
| 1492 | PZY  | Piestany Airport | 1403.892    | Slovakia | SVK  |   |
| 1493 | SLD  | Sliac            | 11876.753   | Slovakia | SVK  |   |
| 1494 | TAT  | Tatry/Poprad     | 39612.286   | Slovakia | SVK  |   |

|      |       |            | geometry  |
|------|-------|------------|-----------|
| L489 | POINT | (17.21670  | 48.16670) |
| L490 | POINT | (18.76670  | 49.23330) |
| L491 | POINT | (21.25000  | 48.66670) |
| L492 | POINT | (17.83330  | 48.63330) |
| L493 | POINT | (19.13330  | 48.63330) |
| 494  | POINT | (20.24030) | 49.07190) |

- We will later need a datasets of coutry boundaries proved by Natural Earth.
- Below we estimate country area from its low resolution borders. For example, area of Slovakia estimated as 47070km2, while World Bank lists as 49030km2.

```
# beware that areas are approximate due to low resolution borders
country_areas = countries['geometry'].to_crs({'proj':'cea'}).area / 1e6
# add areas to countries
countries['Area'] = country_areas
display(Markdown("**Table of countries of the world**"))
display(countries.head())
display(Markdown("**Data for Slovakia**"))
display(countries.loc['SVK', :])
```

## Table of countries of the world

|      | Туре              | Name                     | Population  | ١ |
|------|-------------------|--------------------------|-------------|---|
| ISO3 |                   |                          |             |   |
| FJI  | Sovereign country | Fiji                     | 889953.0    |   |
| TZA  | Sovereign country | Tanzania                 | 58005463.0  |   |
| B28  | Indeterminate     | W. Sahara                | 603253.0    |   |
| CAN  | Sovereign country | Canada                   | 37589262.0  |   |
| USA  | Country           | United States of America | 328239523.0 |   |

#### Region $\setminus$

|        | East   | Asia &                      | Pacific                                                             |
|--------|--------|-----------------------------|---------------------------------------------------------------------|
|        | Sub-   | -Saharan                    | n Africa                                                            |
| Middle | East   | & North                     | n Africa                                                            |
|        |        | North                       | America                                                             |
|        |        | North                       | America                                                             |
|        | Middle | East<br>Sub-<br>Middle East | East Asia &<br>Sub-Saharan<br>Middle East & North<br>North<br>North |

geometry Area

FJIMULTIPOLYGON (((180.00000 -16.06713, 180.00000...1.928760e+04TZAPOLYGON ((33.90371 -0.95000, 34.07262 -1.05982...9.327793e+05B28POLYGON ((-8.66559 27.65643, -8.66512 27.58948...9.666925e+04CANMULTIPOLYGON (((-122.84000 49.00000, -122.9742...1.003773e+07USAMULTIPOLYGON (((-122.84000 49.00000, -120.0000...9.509851e+06

## Data for Slovakia

ISO3

| Туре       | Sovereign country                              |
|------------|------------------------------------------------|
| Name       | Slovakia                                       |
| Population | 5454073.0                                      |
| Region     | Europe & Central Asia                          |
| geometry   | POLYGON ((22.558137648211755 49.08573802346714 |
| Area       | 47069.779734                                   |
| Name: SVK, | dtype: object                                  |

#### All airports as points using Plotly

• We use scatter\_geo function from Plotly Express.

• We set parts of geometry column as latitude and longitude. Column Name is used as a tooltip.

```
[10]: fig = px.scatter_geo(
    airports,
    lat=airports.geometry.y,
    lon=airports.geometry.x,
    hover_name="Name",
    projection="mollweide"
    )
    fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
    fig.show()
```

#### Adding the size of the airport

- We use size of the circle to represent the number of seats.
- Scatterplots with point sizes are often called bubble graphs.
- We focus on Europe, add country borders and change the projection.

```
[11]: fig = px.scatter_geo(
    airports,
    lat=airports.geometry.y,
    lon=airports.geometry.x,
    size="TotalSeats",
    hover_name="Name"
    )
    fig.update_geos(
        projection_type="azimuthal equal area",
        lonaxis_range= [-20, 40],
        lataxis_range= [20, 70],
        showcountries = True
    )
    fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
    fig.show()
```

#### Airline connections from Slovakia as lines

- We import another table (originating from World bank as above), which shows international airline connections from Slovak airports (in an unknown year).
- Each connection is given by two airport codes, the number of airplane seats within a year, and geometry with a segment connecting the two airport locations.
- Line color will correspond to the airport of origin in Slovakia.
- The code is adapted from examples in the Plotly documentation.

display(connections.head())

#### Importing airline connections

|   | OrigCode | DestCode | TotalSeats | \ |
|---|----------|----------|------------|---|
| 0 | BTS      | ADB      | 7370.433   |   |
| 1 | BTS      | AGP      | 15152.501  |   |
| 2 | BTS      | AHO      | 14740.866  |   |
| 3 | BTS      | AQJ      | 3275.748   |   |
| 4 | BTS      | ATH      | 19654.488  |   |

```
geometry
```

0 LINESTRING (17.21670 48.16670, 27.15620 38.29430)

```
1 LINESTRING (17.21670 48.16670, -4.49810 36.67170)
```

2 LINESTRING (17.21670 48.16670, 8.28890 40.63060)

3 LINESTRING (17.21670 48.16670, 35.01940 29.61250)

```
4 LINESTRING (17.21670 48.16670, 23.94440 37.93640)
```

```
[13]: def draw_lines(connections):
        # create two lists with x and y coordinates of polylines
        # separated by None
        lats = []
        lons = []
        # also create lists of origin and destination codes parallel to lists above
        origCodes = []
        destCodes = []
        # iterate through table rows
        for index, row in connections.iterrows():
          # get lists of x and y coordinates (of length 2 in this case)
          x, y = row['geometry'].xy
          # add coordinates and None separator to lists
          lats.extend(list(y) + [None])
          lons.extend(list(x) + [None])
          # add airport codes for each coordinate and None separator
          origCodes.extend([row['OrigCode']] * len(x) + [None])
          destCodes.extend([row['DestCode']] * len(x) + [None])
        # create figure with these lists
        fig = px.line_geo(lat=lats, lon=lons, hover_name=destCodes, color=origCodes)
        # setup projection
        fig.update_geos(
          projection_type="azimuthal equal area",
          lonaxis_range= [-25, 55],
          lataxis_range= [10, 60],
          showcountries = True
        )
        fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
```

```
fig.show()
```

```
# call the function to draw the map
display(Markdown("**Airline connections from Slovak airports**"))
draw_lines(connections)
```

## Airline connections from Slovak airports

## 1.2.4 Isarithmic maps / isoline maps / heatmaps

- These maps display a continuous variable over the map area (elevation, temperature and other weather phenomena etc.).
- Value in each point can be shown by a color scale.
- Some contour lines can be displayed as well.
- A contour line (isoline, isopleth, isarithm, izočiara) connects points of the same value.
- Example: short-term forecasts from the Slovak Hydrometeorological Institute.

## **Density of airports**

- Here we show world airports as both points and their local density as a isarithmic map.
- This is achieved using kdeplot function from the Geoplot library.
- KDE stands for kernel density estimation, and we will explain it in the next lecture.

```
[14]: # plot countries as a background
```

```
ax = gplt.polyplot(
    countries.explode(index_parts=True),
    edgecolor='white',
    facecolor='darkgray',
    figsize=(10, 5),
)
# plot semi-transparent isarithmic map
gplt.kdeplot(
    airports, cmap='viridis',
    fill=True, alpha=0.5, ax=ax
)
# plot points on top
gplt.pointplot(airports, s=1, color='black', ax=ax)
pass
```



## 1.2.5 Choropleth maps (kartogramy)

- Often we have numerical / categorical values for administrative regions (countries, districts, etc.).
- Choropleth maps show such variables via colors applied to the whole region.

Variables over regions:

- **Spatially extensive** variables apply to the unit as a whole (e.g. total population, area, the number of airports in the country). If we subdivide the region, spatially extensive variable will be often the sum of its parts (but not always, e.g. perimeter)
- **Spatially intensive** variables may stay the same if you divide the unit, provided the unit is homogeneous without regional differences. Examples include population density, life expectancy, GDP per person.
- Spatially extensive variables are not appropriate for choropleths, because large value for a large country is visually attributed to each small subregion of the country. If counts are of interest, better use a bubble graph with marker of appropriate size in the region center.

#### Beware:

- A choropleth map is called kartogram in Slovak.
- English word **cartogram** means a map with regions rescaled according to some variable (such as the Levasseur's cartogram of country budgets and a modern example).

#### Choropleth maps of airports per country We will show three choropleth maps:

- the number of airports per 10000 km2 (spatially intensive variable),
- the number of airports per million inhabitants (also spatially intensive),
- the number of airports (spatially extensive, not recommended for choropleth), We will also show the number of airports as a bubble graph (more appropriate than extensive variable).

All choropleth maps are created by Plotly. The bubble graph is also created by plotly, and the bubble is placed to the representative point of each country.

display(Markdown("\*\*The first five rows of `countries2` table:\*\*"))
display(countries2.head())
display(Markdown("\*\*The values for Slovakia:\*\*"))
display(countries2.loc['SVK'])

## The first five rows of countries2 table:

|      |             | Туре    |        |        |     | Name     | Population  | \ |
|------|-------------|---------|--------|--------|-----|----------|-------------|---|
| ISO3 |             |         |        |        |     |          |             |   |
| FJI  | Sovereign ( | country |        |        |     | Fiji     | 889953.0    |   |
| TZA  | Sovereign ( | country |        |        |     | 「anzania | 58005463.0  |   |
| CAN  | Sovereign ( | country |        |        |     | Canada   | 37589262.0  |   |
| USA  | (           | Country | United | States | of  | America  | 328239523.0 |   |
| KAZ  | Sove        | reignty |        |        | Kaz | zakhstan | 18513930.0  |   |

Region  $\setminus$ 

| ISO3 |                       |
|------|-----------------------|
| FJI  | East Asia & Pacific   |
| TZA  | Sub-Saharan Africa    |
| CAN  | North America         |
| USA  | North America         |
| KAZ  | Europe & Central Asia |

geometry

Area \

| ISO3 |                                                |              |
|------|------------------------------------------------|--------------|
| FJI  | MULTIPOLYGON (((180.00000 -16.06713, 180.00000 | 1.928760e+04 |
| TZA  | POLYGON ((33.90371 -0.95000, 34.07262 -1.05982 | 9.327793e+05 |
| CAN  | MULTIPOLYGON (((-122.84000 49.00000, -122.9742 | 1.003773e+07 |
| USA  | MULTIPOLYGON (((-122.84000 49.00000, -120.0000 | 9.509851e+06 |
| KAZ  | POLYGON ((87.35997 49.21498, 86.59878 48.54918 | 2.728701e+06 |

Airports Airport\_density Airports\_per\_mil

|      | -     | - | -       | - | -        |
|------|-------|---|---------|---|----------|
| 1803 |       |   |         |   |          |
| FJI  | 2.0   | 1 | .036935 |   | 2.247310 |
| TZA  | 7.0   | 0 | .075045 |   | 0.120678 |
| CAN  | 82.0  | 0 | .081692 |   | 2.181474 |
| USA  | 291.0 | 0 | .305998 |   | 0.886548 |
| KAZ  | 17.0  | 0 | .062301 |   | 0.918228 |

## The values for Slovakia:

| Туре            |         | Sovereign country                      |
|-----------------|---------|----------------------------------------|
| Name            |         | Slovakia                               |
| Population      |         | 5454073.0                              |
| Region          |         | Europe & Central Asia                  |
| geometry        | POLYGON | ((22.558137648211755 49.08573802346714 |
| Area            |         | 47069.779734                           |
| Airports        |         | 6.0                                    |
| Airport_density |         | 1.274703                               |

```
Airports_per_mil
Name: SVK, dtype: object
```

```
[16]: def draw_choropleth(data, column, range_color=None, label=None):
    fig = px.choropleth(
        data, locations=data.index, color=column,
        range_color=range_color,
        labels={column:label},
        hover_name="Name",
        projection = "mollweide"
        )
        fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
        fig.show()

display(Markdown("**The number of airports per 10000 squared km**"))
draw_choropleth(countries2, 'Airport_density', (0, 2), 'airports / 10000 km2')
```

#### The number of airports per 10000 squared km

The number of airports per million inhabitans

```
[18]: display(Markdown("**The number of airports in a country**"))
draw_choropleth(countries2, 'Airports', (0, 100), 'airports')
```

The number of airports in a country

```
[19]: # make a new table of countries in which geometry is replaced
      # with a single representative point
      countries3 = countries2.copy(deep=True)
      countries3['geometry'] = countries2['geometry'].representative_point()
      # plot as a bubble plot
      display(Markdown("**The number of airports in a country**"))
      fig = px.scatter_geo(
          countries3,
          lat=countries3.geometry.y,
          lon=countries3.geometry.x,
          size="Airports",
          hover_name="Name",
          projection = "mollweide"
          )
      fig.update geos(showcountries = True)
      fig.update_layout(height=300, margin={"r":0,"t":0,"l":0,"b":0})
      fig.show()
```

## The number of airports in a country

## 1.2.6 Summary of maps

- Many data sets contain geographic entities (countries, cities, coordinates).
- Displaying such data on maps highlights spatial relationships.
- In your maps, use appropriate equal-area projections.

Types of thematic maps:

- Bubble plots contain points of various sizes and colors.
- Isarithmic maps / isoline maps / heatmaps display continuously varying variables, such as elevation or temperature using color scales or isolines.
- Choropleth map display variables characterizing whole region using colors. The variable used in choropleth should be intensive, e.g. normalized by area or population.

Several useful libraries:

- Geopandas for working with geographical data, extension of DataFrame
- Geoplot and Plotly for visualization

## 1.3 Graphs and hierarchies

## 1.3.1 Graphs

- A graph / network consists of vertices (vrcholy; also nodes, uzly) and edges (hrany; also links, arcs).
- Vertices often represent real-world **entities**.
- Edges often represent **relationships** and connections between pairs of vertices.

Many real-world examples of graphs: places connected by roads, computers connected by network cables, people connected by family or work relationships, companies connected by financial transactions, texts connected by references, tasks or courses connected by dependencies, any objects connected based on similarity / shared features.

- Edges can be directed (orientované) or undirected depending on whether the relationship is symmetrical.
- Recall: how did you define directed / undirected edges in discrete mathematics?

Graphs are very important in both computer science and data science. They are covered in several courses: discrete mathematics, programming, design of efficient algorithms, network science.

#### **1.3.2** Trees and hierarchies

- An undirected graph is called a **tree** if it is connected and without cycles.
- In practice we usually encounter rooted (directed) trees, which have a single **root**, all other vertices can be reached from the root via a unique path.
- This gives rise to parent / child relationships between nodes (parent is the node closer to the root).
- Trees can express hierarchies in which each entity has a single direct superior, for example:
  - company structure in which each employee (except for the head of the company) has a single supervisor (similarly army command),
  - administrative divisions (country, region, district),

- species taxonomy (animals, mammals, primates, ...).
- However some hierarchies allow multiple direct superiors, for example:
  - family tree where each person has two parents (and they may be distantly related),
  - geometrical shapes, where a square is both a special case of a regular polygon and a special case of a rectangle and both of these are a special case of a polygon.
- These hierarchies can be represented as directed acyclic graphs.
  - Acyclic means that by following edges we never get back to the starting node (nobody is their own ancestor).

## 1.3.3 What do we study / visualize in real-life graphs?

- Details of connections for a particular node (requires zooming in large networks).
- Overall structure of the graph: connected components, density of edges, presence of cycles, weak places (bridges and articulations), clusters of densely connected nodes.
- Do nodes with some property cluster together? (Are they connected by many edges?)

See for example character co-occurrence in Shakespeare's tragedies.

#### 1.3.4 Basics of graph drawing

- Vertices are typically displayed as markers (circles, rectangles etc.), possibly with labels, size, color, ...
- Edges are displayed as lines connecting them, possibly of different color or width. They can be straight lines, arcs, polygonal lines or arbitrary curves.
- Edge direction displayed as arrows or in a hierarchy edges may be drawn to point in one direction, e.g. downwards.

Desirable properties:

- Nodes do not overlap.
- Edges are not too long and have a simple shape without many bends.
- The number of edge crossings is small.
- The graph uses the space of the figure well without large empty regions.

Node positioning:

- Sometimes the position of nodes is given by their properties, e.g. on a map (see airline connections), level of a hierarchy, timeline.
- Otherwise we try to place nodes to optimize desirable properties, e.g. using force-directed layout, which assigns attractive forces (springs) between nodes connected by edges and repulsive forces between other pairs of nodes.

Examples:

- https://en.wikipedia.org/wiki/Graphviz#/media/File:UnitedStatesGraphViz.svg
- https://upload.wikimedia.org/wikipedia/commons/9/90/Visualization\_of\_wiki\_structure\_using\_prefuse\_

#### 1.3.5 Displaying a simple hierarchy in NetworkX

• We start by creating a simple tree representing taxonomy of selected even-toed ungulates (párnokopytníky) as a Pandas DataFrame.

- Each row of the data frame describes each node, giving its name, parent, level along the tree (leaves are 1, root is 5) and category, which is land for land animals, sea for sea animals and group for taxonomy groups.
- Group Artiodactyla is the root without a parent.

#### [20]: from io import StringIO

```
animal_csv = StringIO("""name,parent,level,category
camel,Artiodactyla,1,land
pig, Artiofabula, 1, land
sheep,Caprinae,1,land
goat,Caprinae,1,land
cow,Bovidae,1,land
dolphin,Cetacea,1,sea
whale,Cetacea,1,sea
hippopotamus, Whippomorpha, 1, land
Caprinae, Bovidae, 2, group
Cetacea, Whippomorpha, 2, group
Bovidae, Cetruminantia, 3, group
Whippomorpha, Cetruminantia, 3, group
Cetruminantia, Artiofabula, 4, group
Artiofabula, Artiodactyla, 5, group
Artiodactyla,,6,group""")
animals = pd.read_csv(animal_csv)
animals['category'] = animals['category'].astype('category')
display(animals)
```

|    | name          | parent        | level | category |
|----|---------------|---------------|-------|----------|
| 0  | camel         | Artiodactyla  | 1     | land     |
| 1  | pig           | Artiofabula   | 1     | land     |
| 2  | sheep         | Caprinae      | 1     | land     |
| 3  | goat          | Caprinae      | 1     | land     |
| 4  | COW           | Bovidae       | 1     | land     |
| 5  | dolphin       | Cetacea       | 1     | sea      |
| 6  | whale         | Cetacea       | 1     | sea      |
| 7  | hippopotamus  | Whippomorpha  | 1     | land     |
| 8  | Caprinae      | Bovidae       | 2     | group    |
| 9  | Cetacea       | Whippomorpha  | 2     | group    |
| 10 | Bovidae       | Cetruminantia | 3     | group    |
| 11 | Whippomorpha  | Cetruminantia | 3     | group    |
| 12 | Cetruminantia | Artiofabula   | 4     | group    |
| 13 | Artiofabula   | Artiodactyla  | 5     | group    |
| 14 | Artiodactyla  | NaN           | 6     | group    |

• NetworkX is a large library for working with graphs, it implements many graph algorithms.

• Below we convert our DataFrame to Graph class from NetworkX by adding nodes and edges.

• Nodes and edges can have arbitrary attributes attached, here level and category.

- Then we plot basic representation of the graph.
- The plotting works in two steps: first we compute coordinates of all nodes using multipartite\_layout.
- Then we plot the network using draw\_networkx into Matplotlib axes.
- The plot is not very nice, we will improve it below.

```
[21]: # create empty graph in NetworkX
G = nx.Graph()
# adding each table row as a node
for index, row in animals.iterrows():
    G.add_node(row['name'], level=row['level'], category=row['category'])
# adding an edge to each node from its parent
for index, row in animals.iterrows():
    if row['parent'] is not np.nan:
      G.add_edge(row['parent'], row['name'])
# computing coordinates of nodes
coordinates = nx.multipartite_layout(G, subset_key="level", align='horizontal')
# drawing the graph
(figure, axes) = plt.subplots(figsize=(10, 6))
nx.draw_networkx(G, coordinates, ax=axes)
```

#### pass



- Below we show an improved version of the plot.
- Two nodes are moved manually to reduce overlaps.
- Edges are plotted first.
- Then we draw node lables as boxes with text.
- Each category of nodes is draw separately with a different background color.

```
[22]: # again compute coordinates and move some of them manually
      coordinates2 = nx.multipartite_layout(G, subset_key="level", align='horizontal')
      coordinates2["Whippomorpha"] += (-0.05, 0)
      coordinates2["Cetacea"] += (-0.08, 0)
      # plot edges only, omit nodes for now
      (figure, axes) = plt.subplots(figsize=(10, 6))
      nx.draw_networkx_edges(G, coordinates2, ax=axes)
      # plot each category of nodes by a different color
      color_dict = {'group':'lightgray', 'land':'lightgreen', 'sea':'lightblue'}
      for category in color dict:
        # create a list of nodes on the category
        category_nodes = [v for v in G.nodes if G.nodes[v]['category']==category]
        # select subgraph H of G
       H = G.subgraph(category_nodes)
        # create a dictionary of node label attributes
       label_options = {"ec": "black", "fc": color_dict[category], "alpha": 0.7}
        # draw the node labels as boxes
       nx.draw_networkx_labels(H, coordinates2, font_size=12, bbox=label_options,__
       →ax=axes)
```

#### pass



#### 1.3.6 Hierarchy as a treemap in Plotly Express

- PlotlyExpress can be used to easily create treemaps.
- Leaves of the tree are empty labeled rectangles, upper categories are enclosing boxes.
- To select box colors, we use color\_dict created above.

```
[23]: import plotly.express as px
fig = px.treemap(
    names=animals['name'],
    parents=animals['parent'],
    color=animals['category'],
    color_discrete_map=color_dict
    )
    fig.show()
```

#### 1.3.7 Book character connections in Pyvis

- Here we use an example network from the NetworkX library.
- It represents character co-occurence in the novel Les Misérables by Victor Hugo.
- Edges are weighted by how often characters co-occur.
- To make the plot interactive, we use Pyvis library.
- We convert NetworkX graph to Network class from Pyvis.
- We add two new features for each node: title (used as a tooltip, name of the character) and value (used as a size of the node, representing its number of neighbors, i.e. degree).
- Visualization is saved as a HTML file which is then displayed using HTML class from IPython library.

```
[24]: # initializing an empty network, setup plot properties
      pyvis_net = Network("500px", "500px", notebook=True, cdn_resources='in_line')
      # loading network from NetworkX
      pyvis net from nx(nx les miserables graph())
      # get a dictionary of neighbors for each node
      neighbors = pyvis net.get adj list()
      # add additional node properties
      # used as tooltip and size
      for node in pyvis_net.nodes:
          node["title"] = node["id"]
          node["value"] = len(neighbors[node["id"]])
      # saving the visualization in an html file
      pyvis_net.show("net.html")
      # displaying the html file in the notebook
      from IPython.display import display, HTML
      display(HTML('net.html'))
      pass
```

net.html

#### 1.3.8 Summary of graphs

- Graphs are important in many applications.
- NetworkX library has many functions for working with graphs, including several layout algorithms for visualization.

- Pyvis allows interactive visualization of graphs.
- Plotly can visualize trees as treemaps.

## 1.4 Time series (časové rady)

- Time series are sequences of measurements or values over time (in regular or irregular time intervals).
- Typically displayed as a line graph, with time as x-axis, time flowing from left to right (a cultural convention in western countries).
- Other options for drawing time series exist (bar graphs, heat maps, box plots, ...).

Typical features of a time series:

- overall trend (increasing / decreasing / flat; rate of change),
- seasonality (daily / weekly / yearly cycles),
- noise (general variability / outliers)

We have seen some examples in the first lecture:

- Playfair's atlas, foreign trade
- Hockey stick graph of global temperature (Fig.3a)

## 1.4.1 Two Google trend time series

- Google trends allow users to compare frequency of search terms over time and to each other.
- Here we use Christmas-related terms kapustnica and kapor.

```
[25]: url = "https://bbrejova.github.io/viz/data/kapustnica-kapor.csv"
    trends1 = pd.read_csv(url, parse_dates=['week']).set_index('week')
    display(trends1.head())
```

|            | kapustnica | kapor |
|------------|------------|-------|
| week       |            |       |
| 2019-01-06 | 3          | 15    |
| 2019-01-13 | 2          | 14    |
| 2019-01-20 | 3          | 17    |
| 2019-01-27 | 2          | 18    |
| 2019-02-03 | 2          | 13    |

```
[26]: axes = sns.lineplot(trends1, dashes=False)
    axes.set_ylabel("Frequency of the term (weekly values)")
    axes.set_title("Google trends for two search terms")
    # rotate tick labels
    axes.tick_params(axis='x', labelrotation = 45)
    pass
```



- With kapustnica we see a clear seasonal trend.
- But kapor behaves differently. As related search terms Google reports zbgis kataster, zbgis mapa, zgbis, katasterportal list vlastnictva, dážďovka. Can you explain this?

## 1.4.2 Smoothing data (vyrovnanie, vyhladenie)

- Time series above is measured weekly and is quite noisy.
- We can smooth the data e.g. by **aggregating** them in longer time intervals. Here we compute mean value in each month (4 or 5 weeks).
- This is done using **resample** method from Pandas.
- An alternative is to use a **sliding window** (kĺzavé okno), where we choose a window size. e.g. 4 weeks and compute a new series, each value being mean or other summary of 4 consecutive windows in the input.
- For example with values 2,6,4,2,8,2 and window size 4, we get window means 3.5, 5, 4.

New table of monthly means (the first 5 rows)

kapustnica kapor

week

| 2019-01-31 | 2.50 | 16.0 |
|------------|------|------|
| 2019-02-28 | 1.75 | 13.5 |
| 2019-03-31 | 1.60 | 15.2 |
| 2019-04-30 | 2.75 | 13.0 |
| 2019-05-31 | 2.00 | 12.0 |

The number of values aggregated in each month (the first 5 values)

```
week
2019-01-31 4
2019-02-28 4
2019-03-31 5
2019-04-30 4
2019-05-31 4
Freq: ME, dtype: int64
```

```
[28]: axes = sns.lineplot(trends1monthly, dashes=False)
    axes.set_ylabel("Frequency of the term (monthly means)")
    axes.set_title("Google trends for two search terms")
    axes.tick_params(axis='x', labelrotation = 45)
    pass
```



#### 1.4.3 Trend: temperatures are growing in spring

- We will also look at a dataset displaying a trend: series of temperature values from Piešťany from January to June 2010, downloaded from US National Oceanic and Atmospheric Administration.
- We show both the original data and values smoothed with rolling average.

[29]: # read a dataset of temperatures in Piestany url="https://bbrejova.github.io/viz/data/piestany-weather.csv" weather = pd.read\_csv(url, parse\_dates=['DATE']).set\_index('DATE') # select only columns with daily maximum temperatures temperature = weather["TMAX"] # select only period from January to June 2010 spring2010 = temperature[pd.Timestamp('2010-01-01'):pd.Timestamp('2010-06-30')] display(spring2010)

DATE

| 2010-01-01  | 7.8     |      |        |         |
|-------------|---------|------|--------|---------|
| 2010-01-02  | 1.8     |      |        |         |
| 2010-01-03  | -1.1    |      |        |         |
| 2010-01-04  | -1.4    |      |        |         |
| 2010-01-05  | -1.1    |      |        |         |
|             |         |      |        |         |
| 2010-06-26  | NaN     |      |        |         |
| 2010-06-27  | 25.0    |      |        |         |
| 2010-06-28  | 27.8    |      |        |         |
| 2010-06-29  | 28.2    |      |        |         |
| 2010-06-30  | 29.5    |      |        |         |
| Name: TMAX, | Length: | 181, | dtype: | float64 |
|             |         |      |        |         |

```
[30]: # compute rolling averages in a window of 5 and 30 days
spring2010rolling5 = spring2010.rolling(5, min_periods=2).mean()
spring2010rolling30 = spring2010.rolling(30, min_periods=10).mean()
spring2010rolling5.head(10)
```

```
[30]: DATE
```

| 2010-01-01  | NaN            |
|-------------|----------------|
| 2010-01-02  | 4.800000       |
| 2010-01-03  | 2.833333       |
| 2010-01-04  | 1.775000       |
| 2010-01-05  | 1.200000       |
| 2010-01-06  | -0.200000      |
| 2010-01-07  | -0.460000      |
| 2010-01-08  | -0.300000      |
| 2010-01-09  | 1.125000       |
| 2010-01-10  | 1.866667       |
| Name: TMAX, | dtype: float64 |

```
[31]: (figure, axes) = plt.subplots(3, 1, figsize=(6, 10))
sns.lineplot(spring2010, ax=axes[0])
sns.lineplot(spring2010rolling5, ax=axes[1])
sns.lineplot(spring2010rolling30, ax=axes[2])
axes[0].set_title("Temperature in Piešťany: Original daily values")
axes[1].set_title("5-day rolling average")
```

```
axes[2].set_title("30-day rolling average")
for i in range(3):
    axes[i].set_ylabel("Daily max. temperature °C")
    axes[i].set_xlabel(None)
figure.tight_layout(pad=1.0)
pass
```



#### 1.4.4 Overlapping timescales to display seasonality

- We can better see cyclical trends if we plot each cycle on the same x-axis scale.
- In our Google example, we will use the month as the x axis and plot individual years as lines.

```
[32]: # convert monthly table to long format with separate rows for kapustnica and
       →kapor
      trends1monthlyLong = trends1monthly.reset_index().melt(id_vars=['week'])
      trends1monthlyLong.rename(columns={'variable':'term', 'value':'frequency'},__

inplace=True)

      # create separate columns with year and month
      trends1monthlyLong['month'] = trends1monthlyLong['week'].dt.month
      trends1monthlyLong['year'] = trends1monthlyLong['week'].dt.year
      display(Markdown("**Monthly table in the long format**"))
      display(trends1monthlyLong)
```

#### Monthly table in the long format

|                            | week                                                               | term                                      | frequency                              | month                    | year                                 |
|----------------------------|--------------------------------------------------------------------|-------------------------------------------|----------------------------------------|--------------------------|--------------------------------------|
| 0                          | 2019-01-31                                                         | kapustnica                                | 2.50                                   | 1                        | 2019                                 |
| 1                          | 2019-02-28                                                         | kapustnica                                | 1.75                                   | 2                        | 2019                                 |
| 2                          | 2019-03-31                                                         | kapustnica                                | 1.60                                   | 3                        | 2019                                 |
| 3                          | 2019-04-30                                                         | kapustnica                                | 2.75                                   | 4                        | 2019                                 |
| 4                          | 2019-05-31                                                         | kapustnica                                | 2.00                                   | 5                        | 2019                                 |
| ••                         |                                                                    | •••                                       |                                        | •••                      |                                      |
|                            |                                                                    |                                           |                                        |                          |                                      |
| 91                         | 2022-08-31                                                         | kapor                                     | 9.25                                   | 8                        | 2022                                 |
| 91<br>92                   | 2022-08-31<br>2022-09-30                                           | kapor<br>kapor                            | 9.25<br>10.50                          | 8<br>9                   | 2022<br>2022                         |
| 91<br>92<br>93             | 2022-08-31<br>2022-09-30<br>2022-10-31                             | kapor<br>kapor<br>kapor                   | 9.25<br>10.50<br>9.00                  | 8<br>9<br>10             | 2022<br>2022<br>2022                 |
| 91<br>92<br>93<br>94       | 2022-08-31<br>2022-09-30<br>2022-10-31<br>2022-11-30               | kapor<br>kapor<br>kapor<br>kapor          | 9.25<br>10.50<br>9.00<br>9.25          | 8<br>9<br>10<br>11       | 2022<br>2022<br>2022<br>2022         |
| 91<br>92<br>93<br>94<br>95 | 2022-08-31<br>2022-09-30<br>2022-10-31<br>2022-11-30<br>2022-12-31 | kapor<br>kapor<br>kapor<br>kapor<br>kapor | 9.25<br>10.50<br>9.00<br>9.25<br>13.25 | 8<br>9<br>10<br>11<br>12 | 2022<br>2022<br>2022<br>2022<br>2022 |

```
[96 rows x 5 columns]
```

```
[33]: # use month as x, separate years by line style and search terms by color
      axes = sns.lineplot(trends1monthlyLong, x='month', y='frequency', hue='term',
      ⇔style='year')
      axes.set_title("Google trends for two search terms in different years")
      axes.set_ylabel("Frequency of the term, monthly average")
      pass
```



- We can see that across years the trend is quite stable.
- Below we see another version of the figure where multiple lines for years are replaced with mean and its 95% confidence interval expressing our uncertainty in the true value of the mean due to noise in data.

```
[34]: axes = sns.lineplot(trends1monthlyLong, x='month', y='frequency', hue='term')
axes.set_title("Monthly changes in Google trends for two search terms")
axes.set_ylabel("Monthly frequency of the term\nmean over 2019-2022 + 9%% conf.__
oint.")
pass
```





#### 1.4.5 Importance of scales

- The plot below shows that if we do not start y axis at 0, differences in kapor searches may appear exaggerated.
- The next two plots show that even with y axis starting at 0, the time series may appear more variable with narrower aspect ratio of the figure.









#### 1.4.6 Relative scales

- When we care about rate of increase or decrease, it might be better to express values as a percentage compared to initial value.
- Here we compare values in each month with values in January of the same year.
- In this way even two time series with quite different values can be plotted in the same plot (e.g. revenue of a small and a large company and their relative changes within a year).

Relative values added

| [39]: | week       | term       | frequency | month | year | relValue |
|-------|------------|------------|-----------|-------|------|----------|
| 0     | 2019-01-31 | kapustnica | 2.50      | 1     | 2019 | 100.0    |
| 1     | 2019-02-28 | kapustnica | 1.75      | 2     | 2019 | 70.0     |
| 2     | 2019-03-31 | kapustnica | 1.60      | 3     | 2019 | 64.0     |
| 3     | 2019-04-30 | kapustnica | 2.75      | 4     | 2019 | 110.0    |
| 4     | 2019-05-31 | kapustnica | 2.00      | 5     | 2019 | 80.0     |

pass



#### 1.4.7 One more pair of Google trend lines

- Again very seasonal: lyže and vlek.
- This time we have monthly data over a longer period of time.
- We display the original data as well as yearly seasonal trend.
- The peak month is January for both queries, so we also display January values changing over the years.

```
[41]: url = "https://bbrejova.github.io/viz/data/lyze-vlek.csv"
    trends2 = pd.read_csv(url, parse_dates=['month']).set_index('month')
    display(trends2.head())
```

lyže vlek

n+1

| month      |    |    |
|------------|----|----|
| 2007-01-01 | 28 | 6  |
| 2007-02-01 | 48 | 10 |
| 2007-03-01 | 0  | 3  |
| 2007-04-01 | 5  | 0  |
| 2007-05-01 | 0  | 0  |

```
[42]: axes = sns.lineplot(trends2, dashes=False)
axes.set_title("Google trends for two search terms")
axes.set_ylabel("Frequency of the term (monthly values)")
# rotate tick labels
axes.tick_params(axis='x', labelrotation = 45)
pass
```



|     | date       | term | frequency | month | year |
|-----|------------|------|-----------|-------|------|
| 0   | 2007-01-01 | lyže | 28        | 1     | 2007 |
| 1   | 2007-02-01 | lyže | 48        | 2     | 2007 |
| 2   | 2007-03-01 | lyže | 0         | 3     | 2007 |
| 3   | 2007-04-01 | lyže | 5         | 4     | 2007 |
| 4   | 2007-05-01 | lyže | 0         | 5     | 2007 |
| ••  | •••        |      | ••• •••   |       |      |
| 379 | 2022-08-01 | vlek | 1         | 8     | 2022 |
| 380 | 2022-09-01 | vlek | 0         | 9     | 2022 |
| 381 | 2022-10-01 | vlek | 1         | 10    | 2022 |
| 382 | 2022-11-01 | vlek | 1         | 11    | 2022 |
| 383 | 2022-12-01 | vlek | 8         | 12    | 2022 |

[384 rows x 5 columns]

[44]: axes = sns.lineplot(trends2long, x='month', y='frequency', hue='term')
axes.set\_title("Google trends for two search terms summarized over 2007-2022")
axes.set\_ylabel("Frequency of the term, monthly average")
pass



[45]: lyzeJan = trends2long.query("month==1") axes = sns.lineplot(lyzeJan, x='year', y='frequency', hue='term') axes.set\_ylim(ymin=0) axes.set\_title("Google trends for two search terms in January, 2007-2022") axes.set\_ylabel("Frequency of the term, monthly average") pass



The drop in 2021 was due to pandemics, but what about 2014 and 2018?

#### 1.4.8 Acknowledging missing values

- Let us imagine that January values for 2010 and 2011 are missing.
- If we draw a lineplot in Seaborn, years 2009 and 2012 are connected by a straight line and viewer does not know that something is missing.
- This is not a good idea.
- Below we use pointplot which nicely shows the missing data and also locations of measured values.



```
axes.tick_params(axis='x', labelrotation = 45)
pass
```



## 1.4.9 Summary of time series

Typical goals are to observe and study:

- overall trend (increasing / decreasing / flat; rate of change),
- seasonality (daily / weekly / yearly cycles),
- noise (general variability / outliers)

Useful techniques:

- smoothing by aggregation and sliding window
- overlapping timescales
- relative scales
- showing uncertainty and missing values

# 1 Lecture 7: More statistics

Data Visualization  $\,\cdot\,$  1-DAV-105

Lecture by Broňa Brejová

## 1.1 Importing libraries and data

As usual, we start by importing libraries. We add scipy.stats library for working with probability distributions. One more library will be added at the end of the lecture.

```
[29]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from IPython.display import Markdown
import scipy.stats
```

In this lecture, we will use the World bank dataset from Lecture 03b (table countries) downloaded from WorldBank https://databank.worldbank.org/home under CC BY 4.0 license.

We will also work with an informal survey of preferences and opinions of young people done in 2013 among students of FSEV UK and their friends. Datatset was downloaded from https://www.kaggle.com/miroslavsabo/young-people-survey. Columns correspond to survey questions, rows to respondents. The list of questions and meaning of responses is given in this document.

```
[30]: url = 'https://bbrejova.github.io/viz/data/fsev-responses.csv'
fsev = pd.read_csv(url)
display(Markdown("**Size of fsev table:**"), fsev.shape)
```

Size of fsev table:

(1010, 150)

```
[31]: url = 'https://bbrejova.github.io/viz/data/World_bank.csv'
countries = pd.read_csv(url).set_index('Country')
display(countries.describe())
```

|       | Population2000 | Population2010 | Population2020 | Area         | \ |
|-------|----------------|----------------|----------------|--------------|---|
| count | 2.170000e+02   | 2.170000e+02   | 2.170000e+02   | 2.160000e+02 |   |
| mean  | 2.821267e+07   | 3.201312e+07   | 3.592913e+07   | 6.235930e+05 |   |
| std   | 1.157060e+08   | 1.282292e+08   | 1.398323e+08   | 1.828856e+06 |   |
| min   | 9.638000e+03   | 1.024100e+04   | 1.106900e+04   | 1.000000e+01 |   |
| 25%   | 6.049510e+05   | 7.055170e+05   | 7.972020e+05   | 1.122250e+04 |   |
| 50%   | 5.056174e+06   | 5.768613e+06   | 6.579900e+06   | 1.017050e+05 |   |
| 75%   | 1.639406e+07   | 2.112004e+07   | 2.564925e+07   | 4.786050e+05 |   |
| max   | 1.262645e+09   | 1.337705e+09   | 1.411100e+09   | 1.709825e+07 |   |

|                        | GDP2000        | GDP2010       | GDP2020        | Expectancy2000   | \ |
|------------------------|----------------|---------------|----------------|------------------|---|
| count                  | 199.000000     | 209.000000    | 210.000000     | 211.000000       |   |
| mean                   | 8292.850729    | 16135.528397  | 17547.135072   | 67.358588        |   |
| std                    | 13036.320032   | 24118.156125  | 26171.548454   | 9.795515         |   |
| min                    | 122.961660     | 222.660583    | 216.827417     | 44.518000        |   |
| 25%                    | 654.638840     | 1706.414917   | 2262.246896    | 61.362000        |   |
| 50%                    | 1996.515578    | 5735.422857   | 6370.903532    | 70.417073        |   |
| 75%                    | 10721.262761   | 21447.858255  | 22805.261142   | 74.505000        |   |
| max                    | 81763.827669   | 161780.745361 | 182537.387370  | 81.370000        |   |
|                        |                |               |                |                  |   |
|                        | Expectancy2010 | Expectancy202 | 0 Fertility200 | 00 Fertility2010 | \ |
| $\operatorname{count}$ | 210.000000     | 209.00000     | 0 211.00000    | 211.000000       |   |
| mean                   | 70.580052      | 72.30969      | 9 3.21102      | 2.890908         |   |
| std                    | 8.831970       | 7.48270       | 0 1.71695      | 51 1.490287      |   |
| min                    | 45.596000      | 52.77700      | 0.91200        | 1.042000         |   |
| 25%                    | 64.480750      | 66.79700      | 1.84000        | 00 1.765000      |   |
| 50%                    | 72.810500      | 72.88900      | 2.66000        | 2.340000         |   |
| 75%                    | 77.578598      | 78.04100      | 4.39500        | 3.827000         |   |
| max                    | 83.109000      | 85.49756      | 7.73200        | 7.485000         |   |
|                        |                |               |                |                  |   |
|                        | Fertility2020  |               |                |                  |   |
| count                  | 211.000000     |               |                |                  |   |
| mean                   | 2.525145       |               |                |                  |   |
| std                    | 1.273400       |               |                |                  |   |
| min                    | 0.837000       |               |                |                  |   |

| min | 0.837000 |
|-----|----------|
| 25% | 1.557500 |
| 50% | 2.040000 |
| 75% | 3.257000 |
| max | 6.892000 |

## Values of life expectancy in 2020 in individual countries:

| Country             |                                     |
|---------------------|-------------------------------------|
| Afghanistan         | 62.575000                           |
| Albania             | 76.989000                           |
| Algeria             | 74.453000                           |
| Angola              | 62.261000                           |
| Antigua and Barbuda | 78.841000                           |
|                     | •••                                 |
| Virgin Islands      | 79.819512                           |
| West Bank and Gaza  | 74.403000                           |
| Vaman               |                                     |
| remen               | 64.650000                           |
| Zambia              | 64.650000<br>62.380000              |
| Zambia<br>Zimbabwe  | 64.650000<br>62.380000<br>61.124000 |

Name: Expectancy2020, Length: 209, dtype: float64

#### 1.2 Histograms

Histograms are well known, and we have seen them in Lecture 03. We split the range of a variable into equally sized bins, count the number of data points in each bin and plot the counts as a bar graph.

Histograms allow us to observe many aspects of distribution of values of a variable:

- range of values, outliers
- central tendency
- unimodality / multimodality
- variance
- symmetry / skewness (šikmosť)

```
[33]: axes = sns.histplot(data=countries, x='Expectancy2020')
axes.set_title('Life expectancy of world countries in 2020')
axes.set_xlabel(None)
axes.figure.set_size_inches(5, 3)
pass
```



#### 1.2.1 Custom bins

- Seaborn library makes bins by splitting the range into equally sized intervals, but perhaps a more meaningfull plot uses round values at bin boundaries, e.g. intervals of 5 years 50-55, 55-60, 60-65,...
- We can use manually created bin boundaries in Seaborn.
- Plotly library tries to create more meaningful bins by default.

```
[34]: # create a figure with two plots
figure, axes = plt.subplots(1, 2, figsize=(8,2.5), sharey=True)
```


#### 1.2.2 Use equally-sized bins

- Manually created bin boundaries can be arbitrary, but if bin width is unequal, the resulting plot is confusing.
- If you really need special bins (e.g. age <18 years, 18-65 years, >65 years), make a categorical variable, then plot it as a bar graph (typically displayed as bars with equal width, spaces between bars), clearly mark the meaning of each bar.



#### 1.2.3 Removing outliers

- Histograms are great for spotting outliers.
- But extreme values reduce the space given to more regular values, so perhaps we want to remove them in subsequent analysis.

We have several options:

- Remove them from the dataset if we believe them to be errors.
- Or remove them from the plot only, e.g. by **set\_xlim** or by using custom bins with a smaller range.
- Or clip values: replace values above some threshold with the threshold value (function clip in Pandas). Thus they will be present in the last bin. This bin should be then clearly marked.

```
[37]: axes = sns.histplot(data=countries, x='GDP2020')
axes.set_title('Some countries have a very high GDP')
axes.figure.set_size_inches(5, 3)
pass
```



```
[38]: # replace values larger than 51k with 51k
gdp_clipped = countries['GDP2020'].clip(0, 51000)
# make histogram with manual bins, with last bin 50k-52k
axes = sns.histplot(x=gdp_clipped, bins=np.arange(0, 53000, 2000))
axes.figure.set_size_inches(5, 3)
# mention clipping in plot title
axes.set_title('All GDP values >=50k grouped to the last bin')
# also add a text label to the bin with clipped values
axes.text(x=50000, y=25, s='>=50000')
pass
```



#### 1.2.4 Problems with precision

When working with integers or even real numbers given with a small number of decimal points, we can get artifacts related to different number of possible values falling to different bins.

To illustrate this, we uniformly sample million points from the set  $\{0, 0.01, 0.02, \dots, 0.99\}$ .

- There will be a similar number of samples for each possible value from this set.
- We show histograms with 10, 7 and 77 equally sized bins.
- For 10 bins, each bin summarizes 10 of the possible values and the sizes are approximately the same.
- For 7 bins, the first and the last bin summarize 15 possible values each and remaining bins summarize 14 possible values each. The first and last bin are thus slightly higher.
- For 77 bins, some bins summarize 2 different values, others only 1. We see clear differences in bar height.

If we are unaware of this, we may draw incorrect conclusions from the second and third plot.

```
[39]: sample_uniform = np.random.randint(0, 100, 1000000) / 100
display(Markdown('**Example of data (first values):**'), sample_uniform[0:5])
figure, axes = plt.subplots(1, 3, figsize=(10,2.5))
figure.tight_layout(pad=3)
for (i, bin) in enumerate([10, 7, 77]):
    sns.histplot(x=sample_uniform, bins=bin, ax=axes[i])
    axes[i].set_xlabel(f"{bin} bins")
figure.suptitle("Uniform random numbers from [0,1) with 2 decimal digits")
    pass
```

#### Example of data (first values):

```
array([0.44, 0.65, 0.72, 0.14, 0.46])
```



#### 1.2.5 Small samples

Beware drawing strong conclusions from small samples.

- Below we again first show the histogram of life expectancy over all countries.
- Then we show histograms of four random subsets of 20 countries each.
- Any estimates (including histograms) from small samples are subject to random noise.

```
[40]: axes = sns.histplot(data=countries, x='Expectancy2020')
    axes.set_title('All countries')
    axes.figure.set_size_inches(5, 3)
```

pass



[41]: figure, axes = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(7,4))
for row in axes:
 for subplot in row:
 expectancy\_sample = countries['Expectancy2020'].dropna().sample(20)
 sns.histplot(x=expectancy\_sample, ax=subplot)
 figure.suptitle("Different random subsets of 20 countries")
 pass

#### Different random subsets of 20 countries



#### 1.2.6 Summary: Histogram bin size

To summarize, the tricky part of using histograms is to choose the bin size or the number of bins.

Smaller bins mean more details are visible, but some of those details may be artefacts:

- random fluctuations due to small number of points in the bin, or
- effects related to insufficient resolution of the data.

Thus choose bin size based on:

- the amount of data,
- the precision of input values,
- the meaningful resulution of the results.

In the example below we show the life expectancy data with different number of bins. Do 50 or 500 bins show more meaningful information than 10 bins?





#### 1.2.7 Comparing distributions with histograms

- We can compare distributions of a numerical variable split into groups by a categorical variable.
- For example in our countries table, we can compare life expectancy in different regions of the world.
- Seaborn provides several options for doing so.

The first two plots use semi-transparent overlapping histograms, which work well for two regions (left), but are a mess for many regions (right).



The next two plots attempt to improve the situation.

- On the left we omit bar outlines to simplify the plot.
- On the right we use stacked bars, showing contribution of each region to the whole.

```
[44]: # create figure with 2 plots
figures, axes = plt.subplots(1, 2, figsize=(10, 5))
# plot both histograms
sns.histplot(data=countries, x='Expectancy2020', hue='Region',
```



- Regions contain different number of countries.
- To better compare distribution of the expectancy within region, we should normalize the count to probabilities.
- Use common\_norm=False to normalize each region separately.

#### pass

#### Countries in regions:

| Region                     |    |
|----------------------------|----|
| North America              | 3  |
| South Asia                 | 8  |
| Middle East & North Africa | 21 |
| East Asia & Pacific        | 37 |
| Latin America & Caribbean  | 42 |
| Sub-Saharan Africa         | 48 |
| Europe & Central Asia      | 58 |
| dtype: int64               |    |



- Using FSEV survey, we can compare self-reported heights of women and men.
- We will use only values of adults above 18 years of age.
- Besides the expected trend, we also see a clear outlier, perhaps an error (although people of such heights exist, the cases are extremely rare).
- We will replace it with NaN.



Below we see histograms after removal of the extreme value.

```
[47]: # replace all values lower than 100cm by NaN, in a new column HeighFixed
      adults['HeightFixed']=adults['Height'].mask(adults['Height']<100, np.nan)</pre>
      figure, axes = plt.subplots(1, 3, figsize=(9,4))
      sns.histplot(data = adults, x='HeightFixed', hue='Gender',
                   hue_order=['female', 'male'], palette=['C3', 'C0'],
                   stat="probability", common_norm=False, ax=axes[0])
      sns.histplot(data = adults, x='HeightFixed', hue='Gender',
                   hue_order=['female', 'male'], palette=['C3', 'C0'],
                   ax=axes[1])
      sns.histplot(data = adults, x='HeightFixed', ax=axes[2])
      axes[0].set ylim(0,0.25)
      axes[1].set_ylim(0,140)
      axes[2].set_ylim(0,140)
      axes[0].set_title('Probabilities')
      axes[1].set_title('Counts')
      axes[2].set_title('Counts combined')
      pass
```



#### **1.3** Probability distributions

- For a continuous variable, we can imagine having infinitely many data points and making histogram with infinitely small bins, keeping the area under the histogram equal to one.
- Thus we obtain **probability density function** (PDF) (hustota rozdelenia pravdepodobnosti).
- We often assume that our data are a small sample from one of the well-characterized probability distributions (rozdelenie pravdepodobnosti).

#### 1.3.1 Normal (Gaussian) distribution

- The normal (or Gaussian) distribution has two parameters: mean  $\mu$  and standard deviation  $\sigma$ .
- Its density is f(x) = <sup>1</sup>/<sub>σ√2π</sub> e<sup>-<sup>1</sup>/<sub>2</sub>(<sup>x-μ</sup>/<sub>σ</sub>)<sup>2</sup>.
  This is the well-known bell shape.
  </sup>
- Below we plot both histogram of a million samples from this distribution and the density given by the function above.
- These two plots are very similar.

```
[48]: figure, axes = plt.subplots(1, 2, sharex=True, figsize=(8, 3.5))
```

```
# sample million points from the normal distrib. with mean 0 and std. dev. 3
sample_normal = np.random.normal(0, 3, 1000000)
# create histogram of the sampled points
sns.histplot(x=sample_normal, bins=200, ax=axes[0])
axes[0].set title('Histogram of 1M samples, 200 bins')
# create an object representing normal distrib. with mean 0 and std. dev. 3
normal = scipy.stats.norm(0, 3)
# create equally-spaced points
x = np.arange(-12, 12, 0.1)
# compute values of pdf in these points
y = normal.pdf(x)
# plot the function
axes[1].plot(x, y, 'k-')
axes[1].set_title('Probability density function')
axes[1].set_ylim(0, 0.14)
figure.suptitle("Normal distribution with mean 0, standard dev. 3")
pass
```



- Normal distribution often arises in situations where a variable is a result of many small influences.
- One example is the height of a person within one gender and population.
- Below we fit the normal distribution to the histogram of the adult male heights from the FSEV survey.

```
[49]: # select male height, drop missing values
      male_heights = adults.query("Gender=='male'")['Height'].dropna()
      # compute the characteristics (means, stdev)
      display(Markdown("**Mean male height:**"),
              male_heights.mean(),
              Markdown("**Std. dev. male height:**"),
              male_heights.std())
      # compute the best fit
      parameters = scipy.stats.norm.fit(male_heights)
      display(Markdown("**Best fit:**"), parameters)
      # get function values for regularly distributed x values
      x = np.arange(150, 200, 1)
      pdf_fitted = scipy.stats.norm.pdf(x, loc=parameters[0], scale=parameters[1])
      # plot histogram, normalized as density (area=1)
      figure, axes = plt.subplots(figsize=(5,3))
      sns.histplot(x=male_heights, stat='density', ax=axes)
      # add a line for fitted density
      axes.plot(x, pdf_fitted, 'k-')
      axes.set_title('Male heights with normal distribution fit')
      pass
```

Mean male height:

181.91820580474933

Std. dev. male height:

6.957251247475206

#### Best fit:

(181.91820580474933, 6.948066753375318)



#### 1.4 Kernel Density Estimation (KDE)

- KDE creates a smoothed version of a histogram.
- We choose a kernel function. e.g. the normal distribution.
- For each point in the dataset, the method creates a "kernel" centered at that point.
- It then adds up the heights of all kernel copies.
- The amount of smoothing is controlled by the bandwidth parameter (standard deviation for the normal distribution).
- More information is in the scikit-learn documentation.

https://commons.wikimedia.org/wiki/File:Comparison\_of\_1D\_histogram\_and\_KDE.png\_Drleft at English Wikipedia, CC BY-SA 3.0

- KDE can be conveniently computed directly in Seaborn's displot/kdeplot function.
- The bandwidth is adjusted by bw\_adjust, with default 1.
- A small bandwidth leads to a bumpy plot not representing real trends.
- A large badwidth can obscure real trends.

```
[50]: figure, axes = plt.subplots(1, 3, sharex=True, sharey=True, figsize=(9,2.5))
for axes, bandwidth in [(axes[0], 0.25), (axes[1], 1), (axes[2], 4)]:
    sns.kdeplot(x=countries["Expectancy2020"], ax=axes, bw_adjust=bandwidth)
    axes.set_title(f'Bandwidth {bandwidth}')
    axes.set_xlim(40,100)
    pass
```



We can display combined histogram and KDE.

```
[51]: axes = sns.displot(countries, x="Expectancy2020", kde=True)
    axes.figure.set_size_inches(5, 3)
    pass
```



KDE plots can be also better for comparing multiple distributions, as their smooth curves are easier to follow than histograms.



#### 1.5 Violin plots

- Violin plots are often used instead of boxplots to compare distributions for different values of a categorical variable.
- Each violin consist of two symmetric KDE plots.
- They can be accompanied by a boxplot or strip plot.
- More variants can be found in the Seaborn tutorial.

```
[53]: sns.violinplot(data=countries, y="Region", x="Expectancy2020", color="C1")
pass
```



#### 1.6 Cumulative distribution function

For a probability density function f(x):

• Its cumulative distribution function (CDF) (distribučná funkcia) is the area under the curve from left up to point x.

- F(x) = ∫<sup>x</sup><sub>-∞</sub> f(t) dt.
  CDF is non-decreasing.
- $\lim_{x\to -\infty} F(x) = 0$  and  $\lim_{x\to \infty} F(x) = 1$ .
- F(x) is the probability that the random point from the distribution is  $\leq x$ .

https://commons.wikimedia.org/wiki/File:Normal\_Distribution\_CDF.svg Inductiveload, Public domain

#### 1.6.1 Empirical cumulative distribution function (ECDF)

- This is a similar concept for a finite sample.
- For each x, F(x) is the fraction of the sample which is  $\leq x$ .
- This gives us a step-wise function which can be visualized.
- Unlike histograms and KDE, no parameters need to be set (bins, bandwidth).
- Allows comparison of multiple distributions and their quantiles (how?).
- But harder to interpret than histogram in terms of shape.

```
[54]: grid = sns.displot(adults, x="HeightFixed", hue="Gender", kind="ecdf",
                         hue_order=['female', 'male'], palette=['C3', 'C0'])
      grid.axes[0,0].set title('ECDF for female and male heights')
      grid = sns.displot(countries, x="Expectancy2020", hue="Region", kind="ecdf")
      grid.axes[0,0].set_title('ECDF for expectancy in different regions')
      grid.figure.set_size_inches(5, 3)
      pass
```





#### 1.7Two-dimensional histograms / KDE

- Instead of scatterplots, we can compute 2D histograms or smooth them by KDE.
- This works well if we have many overlapping points. •
- Below we show several variants for the plot height vs. weight of adults in the FSEV survey (with the height outlier removed).
- In scatterplot there is a cloud of overlapping points and it is not clear which parts of it are denser. This can be somewhat improved with smaller points and transparency.

```
[55]: axes = sns.scatterplot(data=adults, x='HeightFixed', y='Weight')
      axes.figure.set_size_inches(5, 3)
      axes.set_title('Scatterplot of height vs weight')
      pass
```



[56]: # plot with smaller points (s=4) and transparency (alpha=0.6)
axes = sns.scatterplot(data=adults, x='HeightFixed', y='Weight', s=4, alpha=0.6)
axes.figure.set\_size\_inches(5, 3)
axes.set\_title('Scatterplot of height vs weight with transparency')
pass



[57]: grid = sns.displot(data=adults, x='HeightFixed', y='Weight')
grid.figure.set\_size\_inches(4, 3)
grid.ax.set\_title('Heatmap (2D histogram) of height vs weight')
pass

Heatmap (2D histogram) of height vs weight



[58]: grid = sns.displot(data=adults, x='HeightFixed', y='Weight', kind="kde")
grid.figure.set\_size\_inches(4, 3)
grid.ax.set\_title('2D KDE of height vs weight: isolines')
pass





#### 1.8 Clustering multi-dimensional data

- The FSEV survey contains questions about phobias and fears, each with answers 1-5 (5 means highest fear).
- We will first randomly select 200 participants without missing values.
- We will display them as a heatmap.

```
[60]: # columns 63-72 are fears, drop rows with missing values, sample 200 people
fsev_sample = fsev.iloc[:, 63:73].dropna().sample(200)
# show sample of the data
display(fsev_sample.head())
```

|     | Flying | Storm | Darkness | Heights | Spiders | Snakes | Rats | Ageing | \ |
|-----|--------|-------|----------|---------|---------|--------|------|--------|---|
| 995 | 3.0    | 2.0   | 1.0      | 1.0     | 1.0     | 2      | 1.0  | 1.0    |   |
| 27  | 3.0    | 5.0   | 2.0      | 2.0     | 5.0     | 5      | 1.0  | 4.0    |   |
| 978 | 3.0    | 1.0   | 4.0      | 3.0     | 4.0     | 4      | 3.0  | 4.0    |   |
| 568 | 2.0    | 5.0   | 3.0      | 3.0     | 3.0     | 5      | 4.0  | 4.0    |   |
| 206 | 3.0    | 2.0   | 1.0      | 2.0     | 3.0     | 3      | 3.0  | 2.0    |   |
|     |        |       |          |         |         |        |      |        |   |

|     | Dangerous | dogs | Fear | of | public | speaking |
|-----|-----------|------|------|----|--------|----------|
| 995 |           | 2.0  |      |    |        | 2.0      |
| 27  |           | 1.0  |      |    |        | 2.0      |
| 978 |           | 2.0  |      |    |        | 3.0      |
| 568 |           | 5.0  |      |    |        | 3.0      |
| 206 |           | 2.0  |      |    |        | 1.0      |





- Heatmap does not show clear trends, but we see that some phobias have higher values than others.
- We display this more explicitly by sorted means.
- Then we "standardize" values for individual phobias by subtracting the mean and dividing by the standard deviation.
- After this change, each phobia has mean 0 and standard deviation 1.
- People with positive scores fear that subject more than average, with negative scores less than average.

```
[62]: display(Markdown("**Phobias sorted by mean score in the survey:**"))
display(fsev_sample.mean().sort_values())
```

#### Phobias sorted by mean score in the survey:

| Storm                   | 1.970 |
|-------------------------|-------|
| Flying                  | 2.180 |
| Darkness                | 2.310 |
| Rats                    | 2.475 |
| Ageing                  | 2.575 |
| Heights                 | 2.740 |
| Fear of public speaking | 2.815 |
| Dangerous dogs          | 2.920 |
| Spiders                 | 2.975 |
| Snakes                  | 3.015 |
| dtvpe: float64          |       |

display(fsev\_sample\_standardized.head())

```
Flying
                        Storm Darkness
                                          Heights
                                                     Spiders
                                                                Snakes
                                                                             Rats
                                                                                  \
     995
          0.694374
                     0.026563 -1.019166 -1.411326 -1.281210 -0.675758 -1.022784
     27
          0.694374
                     2.682911 -0.241177 -0.600219
                                                    1.313646
                                                              1.321556 -1.022784
     978
          0.694374 -0.858886
                               1.314803
                                         0.210888
                                                   0.664932
                                                                        0.364042
                                                              0.655785
     568 -0.152423
                               0.536813
                    2.682911
                                         0.210888
                                                    0.016218
                                                              1.321556
                                                                        1.057455
     206
          0.694374
                     0.026563 -1.019166 -0.600219
                                                    0.016218 -0.009987
                                                                        0.364042
            Ageing
                    Dangerous dogs Fear of public speaking
     995 -1.147529
                          -0.709371
                                                    -0.686886
          1.038241
                          -1.480427
                                                    -0.686886
     27
     978
          1.038241
                          -0.709371
                                                     0.155919
          1.038241
     568
                           1.603796
                                                     0.155919
     206 -0.418939
                          -0.709371
                                                    -1.529692
[64]: figure,axes = plt.subplots(figsize=(10,6))
```



- Heatmap now does not show much.
- Bellow we reorder its rows and columns by clustering (zhlukovanie), which puts similar rows and similar columns together.
- The degree of similarity is reflected also in the trees (recall last lecture about hierarchies).
- Some areas of dark and light colors now appear.



#### 1.9 Dimensionality reduction

Methods for dimensionality reduction project high-dimensional data into lower-dimensional (usually 2D) space, while trying to preserve some structure in the original data.

• **Principal component analysis** (PCA) uses a linear projection: each new dimension is a linear combination (weighted sum) of the original dimensions. Weights are chosen to maximize variance.

Some methods do not use linear projections, but try to preserve distances between points, for example: \* Multidimensional scaling (MDS), \* T-distributed Stochastic Neighbor Embedding (t-SNE).

We will use PCA from the scikit-learn library for machine learning in Python.

```
[66]: from sklearn.decomposition import PCA
# compute PCA of our standardized data with 2 dimensions
fsev_pca = PCA(n_components=2).fit_transform(fsev_sample_standardized)
display(Markdown("**PCA transformed values** (first five lines):"))
display(fsev_pca[0:5, :])
axes = sns.scatterplot(x=fsev_pca[:, 0], y=fsev_pca[:, 1])
```

PCA transformed values (first five lines):

array([[-2.40005395, 0.13763973],
 [ 0.79985413, -0.09193566],
 [ 1.09446725, -0.01171503],
 [ 2.83751212, 0.19095389],
 [-0.90658354, -0.90915457]])



The scatterplot starts to be interesting if we can color points by some known factors.

- Below we see that men and women are quite mixed but women are shifted to the left.
- It seems that the first dimension strongly correlates with the overall fearfuless of a person.
- Fears of snakes and storms are strongly related to the overall fearfulness, but they also have trends along the y-axis.

```
[67]: # all columns for our sample to select gender and all data
      fsev_sample_all = fsev.loc[fsev_sample.index,]
      figure, axes = plt.subplots(2, 2, figsize=(10,10))
      sns.scatterplot(x=fsev_pca[:, 0], y=fsev_pca[:, 1],
                      hue=fsev_sample_all['Gender'],
                      hue_order=['female', 'male'], palette=['C3', 'C0'],
                      ax=axes[0,0])
      axes[0,0].set title('PCA colored by gender')
      sns.scatterplot(x=fsev_pca[:, 0], y=fsev_pca[:, 1],
                      hue=fsev_sample_standardized.sum(axis=1), ax=axes[0,1])
      axes[0,1].set_title('PCA colored by sum of fears')
      sns.scatterplot(x=fsev_pca[:, 0], y=fsev_pca[:, 1],
                      hue=fsev_sample_all['Snakes'], ax=axes[1,0])
      axes[1,0].set_title('PCA colored by fear of snakes')
      sns.scatterplot(x=fsev_pca[:, 0], y=fsev_pca[:, 1],
                      hue=fsev_sample_all['Storm'], ax=axes[1,1])
      axes[1,1].set_title('PCA colored by fear of storm')
      pass
```



#### 1.10 Conclusion and other courses

We briefly covered several statistical concepts often used in visualization:

- histogram,
- kernel density estimation,
- empirical cumulative distribution function,
- clustering,
- dimensionality reduction.

You will learn more in the next years of your study:

- Fundamentals of Probability and Statistics, 2W (DAV) or 3W (BIN)
- Principles of Data Science 3W (DAV)
- Linear Algebra this semester

## Lecture 8 Visual perception and colors

Data visualization · 1-DAV-105 Lecture by Broňa Brejová

Acknowledgement: materials inspired by lectures from Martina Bátorová in 2021

## Aside: data analysis / visualization project phases

- Obtaining data
- Data preprocessing, **checking**, cleaning
- **Exploratory** analysis (many tables and graphs for your use)
- Formation of **hypotheses**
- Testing hypotheses (careful reanalysis, new data, other sources)
- **Explanatory** visualizations for the final report / presentation (best views selected for the audience)

More in two weeks

# Why talk about visual perception in visualization?

## In which period of time was life expectancy higher in Slovakia than in Portugal?

|                 | 1900 | 1910 | 1920 | 1930 | 1940 | 1950 | 1960 | 1970 | 1980 | 1990 | 2000 | 2010 | 2020 |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Country         |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Slovak Republic | 37.9 | 40.9 | 43.9 | 49.9 | 54.0 | 60.9 | 70.3 | 69.7 | 70.5 | 71.0 | 73.5 | 75.6 | 76.9 |
| Portugal        | 35.6 | 35.6 | 35.6 | 40.9 | 51.5 | 58.6 | 64.3 | 67.2 | 71.5 | 74.1 | 76.7 | 80.0 | 81.0 |

## In which period of time was life expectancy higher in Slovakia than in Portugal?



### Visual brain, table vs. graph

We "read" tables, verbal processing

We "see" plots, visual processing

Visual processing is very parallel and fast, evolved to spot predators

In which situations is a table preferable to a plot?



Year

### Human visual perception

What happens when we look at the figure below?



## Human visual perception

## Human visual perception

What happens when we look at the figure?



- The **light** from the screen / projector hits the retinas of our **eyes**
- Photoreceptor cells **transduce** (convert) this signal into nerve impulses
- In the brain:
  - detection of basic features
  - recognition of patterns
  - interpretation, assignment of meaning

**Today**: Focus on the light, eyes and colors, later stages next week

## Light

### Visible light as a part of electromagnetic spectrum



https://commons.wikimedia.org/wiki/File:EM\_spectrum.svg
# Sunlight is a mixture of different wavelengths



https://commons.wikimedia.org/wiki/File:Solar\_spectrum\_en.svg https://commons.wikimedia.org/wiki/File:WhereRainbowRises.jpg



# Human eye

### Human eye



**Retina** (sietnica): light-sensitive layer

Lens (šošovka): focus light to retina

**Pupil** (zrenica): hole in iris (dúhovka) where light enters the eye, its size regulated by the amount of light

## Photoreceptor cells in the retina



**Rods** (tyčinky): more sensitive to low light, not used for color vision

**Cones** (čapíky): color vision, three different types sensitive to different wavelengths (blue, green, red)

https://commons.wikimedia.org/wiki/File:Cones\_SMJ2\_E.svg

## Foveal vs peripheral vision



Peripheral system for general holistic impression of the situation. Foveal system for high quality details. **Fovea**: central zone with many cones, sharp color vision, only about 1-2°

**Peripheral vision:** mostly rods, fast monochrome vision

The eyes make fast **movements** (saccades) between fixations on different points of interest to create a composite image

# Colors and color spaces



https://jamie-wong.com/post/color/

# Color spaces, LMS





A color space is an organization of colors.

Our eye projects a full light spectrum into three values: response of the three types of cones.

S (short), M (medium), L (large) wavelength

**LMS** color space uses these three values to represent a color.

Metameric colors have the same values.

Derived models, e.g. CIE with better properties.

https://commons.wikimedia.org/wiki/File:Solar\_spectrum\_en.svg https://commons.wikimedia.org/wiki/File:Cones\_SMJ2\_E.svg

### Do you know some other color spaces?

# Additive color models, RGB

Monitors, projectors etc.

Component lights in **primary colors**, other colors mixtures of these (adding up light).

White can be achieved by combining colors.

**RGB** uses **red**, **green**, **blue** as primary (corresponds to LMS peaks).

The **gamut** is the set of colors representable by a device, usually a subset of the visible spectrum.

https://commons.wikimedia.org/wiki/File:RGB\_illumination.jpg https://commons.wikimedia.org/wiki/File:Nexus\_one\_screen\_microscope.jpg





# Colors in RGB space (RGB cube)

RGB is often used to specify colors. Each coordinate e.g. a real number between 0 and 1 or integer between 0 and 255.

Also hexadecimal notation, e.g. #ff0000 is pure red.

Greytones on the main diagonal (x,x,x).

Bille



https://commons.wikimedia.org/wiki/File:RGB\_color\_solid\_cube.png https://commons.wikimedia.org/wiki/File:RGB\_Cube\_Show\_lowgamma\_cutout\_ b.png

# HSL and HSV color models

Transformations of RGB model with more intuitive coordinates.

Useful for color pickers, color palettes, image transformations etc.

Hue, saturation, lightness / hue, saturation, value.







https://commons.wikimedia.org/wiki/File:HSL\_color\_solid\_cylinder\_saturation\_gray.png https://commons.wikimedia.org/wiki/File:HSV\_color\_solid\_cylinder\_saturation\_gray.png

# Subtractive models, pigments

Pigments block part of the light spectrum.

Adding more pigments blocks (subtracts) more light.

Black can be achieved by combining colors.

Example: CMY(K) color model used in **printing**.

https://commons.wikimedia.org/wiki/File:SubtractiveColor.svg



# CMY(K) color model

Primary colors cyan, magenta and yellow

- cyan absorbs red
- magenta absorbs green
- yellow absorbs blue
- Black (K) added because
- it is cheaper
- it hides artifacts in dark colors

Conversion from RGB to CMYK is difficult, device-dependent.

https://commons.wikimedia.org/wiki/File:Barns\_grand\_tetons.jpg https://commons.wikimedia.org/wiki/File:CMY\_separation\_%E2%80%93\_no\_black.jpg https://commons.wikimedia.org/wiki/File:CMYK\_separation\_%E2%80%93\_maximum\_black.jpg







# Color wheel, RYB model

Subtractive model developed in art, for mixing pigments

Dates back to 17th century

Primary colors red, yellow, blue

**Secondary** orange, green, purple (each a mix of two primaries)



## Tint, tone, shade - more painter terminology



https://commons.wikimedia.org/wiki/File:Tint-tone-shade.svg

# Examples of color schemes

Monochromatic: tints / tones / shades of the same hue

**Complementary**: 2 colors opposite on the color wheel (e.g. orange and blue)

**Split complementary**: color and 2 neighbors of its complement (e.g. orange and blue-green, blue-purple)

Analogous: 3-5 adjacent colors on the wheel

Each of these can be desaturated (tints / tones / shades)

See also https://color.adobe.com/create/color-wheel



# Color and meaning, cultural differences

Colors often symbolize different things both within and between cultures:

- for example red: blood, love, passion, life, anger, violence, danger, emergency, speed, heat ...
  - China: good luck, prosperity vs. Europe: warning
  - "in the red" mean losses in English, what about China?
- mourning color is black in Europe, white in the East

# Colors in data visualization

# Not everybody will be able to see your colors

**Color blindness or color vision deficiency** 

Various forms and causes

Most often genetic red–green color blindness, where L or M opsin gene is mutated (8% of males)

#### **Technical problems**

- Projectors often distort colors
- Black-and-white printing

Choose your colors wisely to avoid these problems as much as possible

https://commons.wikimedia.org/wiki/Fil e:lshihara\_9.svg



# Color draws attention, use it sparingly

Rely on neutral tones

Use color sparingly, avoid unnecessary colors Colors are great for highlighting points of interest



# Qualitative palettes (for categorical variables)

Typically vary hues, easier to distinguish than lightness of the same hue

Try to keep the number of colors low



https://seaborn.pydata.org/tutorial/color\_palettes.html

# Qualitative palettes (for categorical variables)



# Quantitative sequential palettes (for numerical variables)

Vary lightness rather than (just) hue (hue is circular, hard to interpret)

**Discrete vs continuous:** 



https://seaborn.pydata.org/tutorial/color\_palettes.html

# Quantitative diverging palettes

For numerical variables with a special midpoint, often 0 (such as increase / decrease)

Midpoint displayed as a special neutral color, e.g. grey



https://seaborn.pydata.org/tutorial/color\_palettes.html

# Summary

Visual perception:

- light on the retina, transduction on photoreceptor cells
- feature detection, pattern formation, interpretation

Light and color:

- Visible light as a part of electromagnetic spectrum
- Three types of cones sensitive to different wavelengths of light

Color spaces (LMS, RGB, HSL, HSV, CMYK, RYB)

Colors in visualization (qualitative and quantitative palettes, color blindness, sparing use of colors)

# Graphics file formats (for exporting graphs)

Raster formats: store your plot as pixels at some resolution

- resolution leads to tradeoff between size and quality
- prefer lossless compression (PNG rather than JPEG)
- transparent background may be also a good idea

Vector formats: store your plot as geometric objects (SVG, PDF, EPS)

- can be arbitrarily enlarged, editable
- can be large if many points / lines (subsample data?)
- vector formats usually preferable unless not supported by software
- it is a good idea to include fonts in the file
- beware that these file formats may include bitmaps

# Lecture 9 Pre-attentive attributes, gestalt, illusions

Data visualization · 1-DAV-105 Lecture by Broňa Brejová

Acknowledgement: materials inspired by lectures from Martina Bátorová in 2021

# Human visual perception

What happens when we look at the figure?



- The **light** from the screen / projector hits the retinas of our **eyes**
- Photoreceptor cells **transduce** (convert) this signal into nerve impulses
- In the brain:
  - detection of basic features
  - recognition of patterns
  - interpretation, assignment of meaning

# Human visual perception

What happens when we look at the figure?



- The **light** from the screen / projector hits the retinas of our **eyes**
- Photoreceptor cells **transduce** (convert) this signal into nerve impulses
- In the brain:
  - detection of basic features
  - recognition of patterns
  - interpretation, assignment of meaning

Today: Detection of features and patterns, use for visualization

**Note:** Human visual perception is very good for detecting **motion** (danger/prey). This is relevant for animated visualization, but not covered today.

# In which period of time was life expectancy higher in Slovakia than in Portugal?

|                 | 1900 | 1910 | 1920 | 1930 | 1940 | 1950 | 1960 | 1970 | 1980 | 1990 | 2000 | 2010 | 2020 |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Country         |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Slovak Republic | 37.9 | 40.9 | 43.9 | 49.9 | 54.0 | 60.9 | 70.3 | 69.7 | 70.5 | 71.0 | 73.5 | 75.6 | 76.9 |
| Portugal        | 35.6 | 35.6 | 35.6 | 40.9 | 51.5 | 58.6 | 64.3 | 67.2 | 71.5 | 74.1 | 76.7 | 80.0 | 81.0 |

# In which period of time was life expectancy higher in Slovakia than in Portugal?



How many copies of digit six do you see?

What about now?

### What about Slovakia vs Portugal in this table?

|          | 1900 | 1910 | 1920 | 1930 | 1940 | 1950 | 1960 | 1970 | 1980 | 1990 | 2000 | 2010 | 2020 |
|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Slovakia | 37.9 | 40.9 | 43.9 | 49.9 | 54.0 | 60.9 | 70.3 | 69.7 | 70.5 | 71.0 | 73.5 | 75.6 | 76.9 |
| Portugal | 35.6 | 35.6 | 35.6 | 40.9 | 51.5 | 58.6 | 64.3 | 67.2 | 71.5 | 74.1 | 76.7 | 80.0 | 81.0 |

## **Pre-attentive attributes**

- Features of the seen objects detected by our brain very **fast**
- Prior to and **without** the need of conscious **awareness**
- Brain uses them to **guide attention** / gaze to interesting parts of the scene
- Their correct use allows fast and effortless understanding of our visualizations

#### Next:

Examples of important pre-attentive attributes (form, color, position) following Few 2009

See also <a href="https://www.csc2.ncsu.edu/faculty/healey/PP/">https://www.csc2.ncsu.edu/faculty/healey/PP/</a>
## Pre-attentive attributes: form

We can quickly distinguish one object that differs from the rest



Length

## Pre-attentive attributes: form

We can quickly distinguish one object that differs from the rest



Size

Shape

## Pre-attentive attributes: color

We can quickly distinguish one object that differs from the rest



Lightness

#### Pre-attentive attributes: position



Groups

## Hierarchy of graph elements

Cleveland, McGill 1985

Experiments with volunteers of how well they **judge ratios** between values graphically encoded in different ways.

Not all pre-attentive attributes are equally good for quantitative reasoning.

#### Prefer elements on the left side for accuracy



Based on https://paldhous.github.io/ucb/2015/dataviz/week2.htm

#### The same data with length / area / color / angle





#### Chart selection tools

In lecture 3 and later, we have seen many types of graphs

Some websites list them based on variable type and purpose for easier selection:

- https://www.data-to-viz.com/
- https://extremepresentation.typepad.com/blog/2006/09/choosing\_a\_good.html

Let us look at some the suggestions from the first website in terms of the hierarchy of graph elements

#### From parts to the whole: gestalt

- Gestalt psychology (early 20th century, Austria and Germany)
- Gestalt means pattern
- Our brains group individual shapes into larger patterns
- The brain favors speed to precision (illusions, errors)
- It also favors symmetry and simplicity
- Several gestalt principles are relevant in data visualization



https://commons.wikimedia.org/wiki/File:Reification.svg

## Principle of proximity

- Objects located close to each other are perceived as a group
- Good use of space in plots / tables / presentations can improve readability



https://commons.wikimedia.org/wiki/File:Gestalt\_proximity.svg

## Principle of similarity

- Similar objects are perceived as a group even of not close by
- Various plots use color / shape to distinguish groups





https://commons.wikimedia.org/wiki/File:Gestalt\_similarity.svg

#### How are both principles used here?



#### Example

separate legend vs marking lines with text in the same color

- using principles of proximity and similarity



#### Principle of connection

- Connected objects are perceived to form a group
- Stronger than proximity and similarity
- Consider carefully when to use line graph vs. scatter plot



#### Principle of enclosure

- Enclosed objects are perceived as a member of the group
- Stronger than proximity and similarity
- Useful for highlighting in plots; little is enough (e.g. light background)



## Principle of closure

- Our brain fills gaps in figures, connects interrupted lines
- Useful / dangerous when interruptions by design



https://commons.wikimedia.org/wiki/File:Gestalt\_closure.svg

#### Principle of continuity

Smooth lines are easier to follow than angular and sharp



#### Frames not necessary, gestalt principles fills them in

(principles of closure and continuity)

| South Sudan          |    |                         |    |    |    |    |    |    |    |  |
|----------------------|----|-------------------------|----|----|----|----|----|----|----|--|
| Somalia              |    |                         |    |    |    |    |    |    |    |  |
| Sierra Leone         | l. |                         |    |    |    |    |    |    |    |  |
| South Africa         |    |                         |    |    |    |    |    |    |    |  |
| Sudan                |    |                         |    |    |    |    |    |    |    |  |
| Syrian Arab Republic |    |                         |    |    |    |    |    |    |    |  |
| Sri Lanka            |    |                         |    |    |    |    |    |    |    |  |
| Slovak Republic      |    |                         |    |    |    |    |    |    |    |  |
| Slovenia             |    |                         |    |    |    |    |    |    |    |  |
| Spain                |    |                         |    |    |    |    |    |    |    |  |
| Sweden               |    |                         |    |    |    |    |    |    |    |  |
| Switzerland          |    |                         |    |    |    |    |    |    |    |  |
| Singapore            |    |                         |    |    |    |    |    |    |    |  |
| C                    | )  | 10                      | 20 | 30 | 40 | 50 | 60 | 70 | 80 |  |
|                      |    | Life expectancy in 2020 |    |    |    |    |    |    |    |  |

### Illusions

- Fast visual processing leads to errors
- These are demonstrated by many optical illusions
- Beware not to create illusions in your plots

## Illusions: length and size

Müller-Lyer and Ebbinghaus illusions







https://commons.wikimedia.org/wiki/File:M%C3%BCller-Lyer\_illusion.svg https://commons.wikimedia.org/wiki/File:Mond-vergleich.svg

#### Illusions: length, perspective, spatial compensation



https://commons.wikimedia.org/wiki/File:Mueller\_lyer.svg https://commons.wikimedia.org/wiki/File:Ponzo illusion.gif

#### Illusions: color



https://en.wikipedia.org/wiki/File:Checker\_shadow\_illusion.svg https://commons.wikimedia.org/wiki/File:Grey\_square\_optical\_illusion\_proof2.svg

#### Illusions: color

Mach bands: when bands touch, the edge effect exaggerates their difference



#### Illusions: color

In heatmap the perception of colors influenced by their surroundings



## Working memory

- **Iconic memory:** extremely short-term (<1s), simple pre-attentive processing
- Visual short-term memory: many seconds, but very small capacity (only 3-5 items)
- Long-term memory: store and recall selected information

Since working memory is small, looking at a plot with many colors requires back-and-forth between legend and plot



### Chart and table junk

- Chart junk: elements of plots not necessary to convey information
- They unhelpfully catch our attention through pre-attentive attributes
- Most visualization can be improved by simplification
- Some redundancy can be useful

Nice visualizations of the simplification process:

- <u>https://www.darkhorseanalytics.com/blog/data-looks-better-naked</u>
- Also tables, maps and the unpopular pie charts

## Summary

- **Pre-attentive attributes** are processed by our brains very fast
- Choosing the right attributes from the **hierarchy** allows accurate quantification
- Principles of **gestalt** describe how the brain connects part to the whole
- The brain can also make errors in visual processing as seen in **illusions**
- Removing **chart junk** concentrates our attention to the important elements

#### Additional sources

- <u>Utilizing Gestalt Principles to Improve Your Data Visualization Design</u>
- <u>http://daydreamingnumbers.com/blog/gestalt-laws-data-visualization/</u>
- Albert Cairo: The Functional Art
- C.N. Knaflic: Storytelling with Data
- Stephen Few: Now You See it

# Visualizing text data

## Visualizing text data

Working with natural text is difficult

- Complex grammar, ambiguous meaning, synonyms, etc.
- Lot of machine learning research
- Nonetheless sometimes simple statistics on frequencies of words or groups of words can be useful
- Usually we remove stop words (frequent words such as "and", "is"...) and apply *lemmatization* (convert inflected words to canonical form, such as "seen" -> "see")

#### Word clouds

https://commons.wikimedia.o rg/wiki/File:State\_of\_the\_uni on\_word\_clouds.png

#### State of the Union Address, 2002 vs. 2011 afghanistan allies afgha ago already americ

american attack best budget children **citizens** camps CONGRESS continue CORPS COUNTRY create danger depend destruction develop economy encourage enemies evil extend fight free freedom government health help history home homeland hope increase islamic JODS join lives mass military moment months **Nation** opportunity peace people police power protect rebuild regimes resolve retirement Security states tax terror terrorists thank thousands together tonight training true united war ways weapons women work workers world

act

afghan ago already american behind believe best better building business **Care** century challenge chance change child children clean college company compete congress COUNTRY create cuts deficit democrats different don done dream economy education energy family future generation aive **Government** health help home idea innovation internet invest **IODS** laughter law nation live life money people percent possible projects race reform republicans research responsibility schools spending states step students success support sure tax teachers technology things together tonight troops willing Win WORK workers world years

President Obama, January 25, 2011

#### Word clouds

- Display the most common words from a text
- Size of words grows with frequency
- Arranged to be visually pleasing
- Not the best option for understanding/comparing word frequencies
- You can also display word frequencies using **bar graphs** and other plot types

## Tag cloud

- Endings of German city names typical for individual regions
- Combination of a word cloud and map
- Figure from <u>Reckziegel et al 2018</u>

heim feld .... hag Itz ich dorf dorf dorf dorf dorf owin dorf ich dorf au ow ow OW heim ich OW dorf dorf au ow OW hausen OW dorf burg hausen ing horst dorf au hot ow berg dorf dorf ow horst dorf dorf ow OW dorf ing hausen dorf ow dorf dorf heim leben adort dorf<sup>au</sup>itz dorf ow itz dorf hausen hausen rod oWitz dorf itzitz rod USEN ach rodach ach dorfitz itz indorf ach grün ach scheid ach ach dorfrod ing heimach ingach achhof ach heim ach hof ing ing ing ING ach ach: ing ach ing berg ing ach ing berg

#### Word tree

Shows with words most often follow or precede a given word using a hierarchy

Text: Introduction to The Origin of Species by Charles Darwin, 1859, 1872

Figure source

emed to throw some light -

al conclusions that I have

his excellent judgment. In considering

aining as yet unexplained in regard to

sting by his selection successive slight variations. I will then pass on to

on

the origin

of

that

each

an can be changed and perfected into a highly developed being or into

cal succession, and other such facts, might come to the conclusion -

ntly entertained, and which I formerly entertained — namely, that

acknowledged varieties of any one species are the descendants of -

s, applied to the whole animal and vegetable kingdoms. As many –

tly entertained, and which I formerly entertained — namely, that -

ions of the many beings which live around us. Who can explain why t species, in the same manner as the acknowledged varieties of any

uccession, and other such facts, might come to the conclusion that species had not uccession, and other such facts, might come to the conclusion that species had not

he mutual relations of the many beings which live around us. Who can explain why

called the same genera are lineal descendants of some other and generally extinct

#### species

#### Phrase nets

Phrases of type "X of Y", X connected to Y in a graph; source van Ham et al 2009



#### Text visualization: additional sources

- Courses Data management (2L), Principles of Data Science (3Z)
- Text visualization browser <u>https://textvis.lnu.se/</u>
- Lecture from Univ. of Washington
- <u>Drawing Elena Ferrante's Profile</u>: Finding out who is Elena Ferrante, bestselling Italian author (My Brilliant Friend) by comparing word frequencies etc. (see e.g. page 100)
# Lecture 10 Presentation of results

#### Data visualization · 1-DAV-105 Lecture by Broňa Brejová

Acknowledgement: materials inspired by lectures from Martina Bátorová in 2021

## Data analysis project phases

#### Recall from L08: Data analysis project phases

- Obtaining data
- Data preprocessing, checking, cleaning
- Exploratory analysis
- Formation of **hypotheses**
- Testing hypotheses
- **Explanatory** visualizations for the final report / presentation

#### Details: obtaining data

- Obtaining data
  - This course: we download whole datasets in a tabular form
  - But often also web scraping, manual collection of data, measurements, surveys,...
  - Requires careful planning
- Data preprocessing, checking, cleaning
- Exploratory analysis
- Formation of **hypotheses**
- Testing hypotheses
- **Explanatory** visualizations for the final report / presentation

#### Details: preprocessing data

- Obtaining data
- Data preprocessing, checking, cleaning
  - Try to understand how (and why) the data was obtained and processed
  - Convert them to a convenient format
  - Check for missing values and suspicious outliers
  - Very important phrase: "Garbage in, garbage out"
- Exploratory analysis
- Formation of **hypotheses**
- Testing hypotheses
- **Explanatory** visualizations for the final report / presentation

#### Details: exploratory analysis

- Obtaining data
- Data preprocessing, checking, cleaning
- **Exploratory** analysis
  - Try many analyses
  - This course: visualizations and simple statistics
  - Later you learn advanced statistical and machine learning models
  - Less successful attempts may suggest new directions
- Formation of **hypotheses**
- Testing hypotheses
- **Explanatory** visualizations for the final report / presentation

#### Details: Formation of hypotheses

- Obtaining data
- Data preprocessing, checking, cleaning
- **Exploratory** analysis
- Formation of hypotheses
  - Select visualizations showing interesting trends / exceptions in the data
  - Formulate possible relationships (but remember, correlation does not imply causation)
- Testing hypotheses
- **Explanatory** visualizations for the final report / presentation

#### Details: Testing hypotheses

- Obtaining data
- Data preprocessing, checking, cleaning
- Exploratory analysis
- Formation of **hypotheses**
- Testing hypotheses
  - Recheck your code and data, try other related analyses
  - Try to find other relevant data or existing analyses by other people
  - If important decisions will be based on your result, test it particularly thoroughly (what would happen if our plot was all wrong?)
- **Explanatory** visualizations for the final report / presentation

#### Details: Explanatory visualizations

- Obtaining data
- Data preprocessing, checking, cleaning
- Exploratory analysis
- Formation of **hypotheses**
- Testing hypotheses
- **Explanatory** visualizations for the final report / presentation
  - Formulate your conclusions
  - Support them with your analysis and visualizations
  - Do not include all exploratory analyses
    (but do not hide data contradicting your conclusion)
  - Polish visualizations that you selected

## Presentation of results

#### Presentation of results

- Understand **context**, audience, goals (more later)
- Tell a **story** (more later)
- Choose appropriate **visuals** (text / table / chart, appropriate type of graph, pre-attentive attributes, hierarchy of graph elements)
- Eliminate clutter, **focus attention** on the main points (pre-attentive attributes, such as color, size, spacing)
- Pay attention to **design** (accessibility due to font size and colors, aesthetics...)
- Get feedback and a lot of practice

(see Cole Nussbaumer Knaflic: Storytelling with data)

#### Understand the context of your presentation

Before writing any text or preparing any presentation try to find out:

- Who is your expected audience?
- What do they know and what do you need to explain?
- What might be interesting / new for them?
- What is the medium (live presentation, video, printed text, website)?
- What is the appropriate length (time, number of pages)?
- What do you want to achieve by the presentation? (inform / entertain / inspire to take a specific action)

#### Examples

Try to list some examples of situations where data visualization might be presented: who are speakers and audiences, what are goals

#### Situations where data visualizations are presented

- A **company** presents to potential **consumers**, persuades them to **buy** their products
- A charity presents to general public, persuades them to donate
- A **nonprofit / government** present to general **public**, persuades them to take **action** (live healthily, protect environment, ...)
- An **employee** presents to **colleagues**, persuades them to **change** processes
- A politician presents to general public, persuades them to vote for something
- A journalist writes for general public, informs them about important issues
- A teacher presents to students, teaches them a given topic
- A student presents to a teacher, demonstrates his / her achievements and skills
- A speaker talks to general **public**, **entertains / informs** about interesting topics
- A speaker talks to **experts**, informs about **new discoveries**, technologies etc.

#### **Presentation of results**

- Understand context
- Tell a story
- Choose appropriate visuals
- Eliminate clutter, focus attention on the main points
- Get feedback and a lot of practice

### Storytelling

- We are easily captivated by a good story (book, movie, play)
  - We do not want to interrupt reading / watching
  - We can recall the plot afterwards
  - We want to achieve similar effects by your presentation
- Traditional stories structured as basic plot twists ending
- This roughly corresponds to introduction, actual content, conclusion
- Repetition useful in stories as well as in presentation
- Suspense and surprise

(see Cole Nussbaumer Knaflic: Storytelling with data)

#### Storytelling: structuring presentation

- One option is to describe your process of discovery roughly **chronologically** (omitting some dead ends): identifying question, getting data, analyzing data, coming to conclusion, recommending action
- Another option is to **lead with the ending**: starting with a call to action, backing it up with data

(see Cole Nussbaumer Knaflic: Storytelling with data)

## Cognitive biases

#### Cognitive bias (kognitívne skreslenie)

- Cognitive bias is a systematic deviation from rational judgement
- A brain mechanism to create shortcuts, allow fast reasoning
- Term introduced by Amos Tversky and Daniel Kahneman in 1972

Very long list of biases discovered by researchers:

https://commons.wikimedia.org/wiki/File:The\_Cognitive\_Bias\_Codex - 180%2B\_ biases.\_designed\_by\_John\_Manoogian\_III\_(jm3).png

#### Three cognitive biases

- **Patternicity bias:** See non-existent patterns in data, even in <u>random noise</u> (related to seeing faces in the clouds)
- **Storytelling bias:** Invent "stories", explanations, cause-effect relationships for these patterns
- **Confirmation bias:** It is hard to discard our beliefs. We search for evidence that back our theories and interpret contradicting evidence the opposite way.

See Alberto Cairo: The Truthful Art

#### Cognitive biases in analysis and presentation

- Beware of biases in yourselves during analysis and in your audience during presentation
- "The first principle is that you must not fool yourself---and you are the easiest person to fool" Richard Feynman

### Do not oversimplify

Story from Alberto Cairo: The Truthful Art

"Study finds that more than a quarter journalism grads wish they'd chosen a different career" Poynter Institute, 2013

Storytelling bias suggests:

- A change from printed to online media leads to worse job market for journalists
- Cairo as a journalism professor starts to worry about his future

#### Journalism grads (cont.)

"Study finds that more than a quarter journalism grads wish they'd chosen a different career" Poynter Institute, 2013

Actual value is 28%, as found by a <u>survey</u>

- This value by itself is presumably correct
- However it is not put into perspective, compared with other values

#### Results of Cairo's investigation

- The dissatisfaction among journalism students did not change much over the years
- Decreases in the number of news reporters and their low salaries
- Survey results imply sampling error which should be considered
- (Ideally compare to grads from other fields)

He suggests reformulating the message of the story:

"Even if jobs prospects for journalists have worsened substantially and they may worsen even further in the future, the percentage of grads who wish they'd chosen a different career hasn't changed at all in more than a decade."

#### Properties of good visualization

- **Truthful** (based on thorough and honest research, high quality data, appropriate analysis, correct math, no bugs in code)
- **Functional** (constitutes an accurate depiction of the data, allows meaningful comparisons)
- **Beautiful** (attractive, intriguing, aesthetically pleasing for target audience)
- **Insightful** (reveals evidence hard to see otherwise)
- **Enlightening** (changes our minds for the better)

Alberto Cairo: The Truthful Art (journalist's perspective)

## Back to thoughts on good visualization

#### Last lecture

**Pre-attentive attributes** are quickly recognized by our brain (size, color, position,...)

**Hierarchy of graph elements**: not all attributes are good for accurate quantitative reasoning

**Gestalt principles**: how brain connects elements into larger patterns (proximity, similarity, connection, enclosure, closure, continuity,)

Errors in visual processing lead to **illusions** 

This informs our chart type choice (bars vs pies) and elimination of chart junk

#### Additional aspects of good plot choice

**Basic setup:** Selecting variables, choosing type of plot, assigning variables to x, y, color...

**Data transformations:** filtering (e.g. select data from one region), aggregating (e.g. summary per region) to avoid overplotting

Additional settings: sorting (e.g. bar graph columns), rescaling (log axis), re-expressing (e.g. absolute value vs relative change), zooming

**Focus and explanation:** highlighting, annotating (adding notes to plot)

Inspired by Stephen Few: Now you see it

#### Speed is not always everything

While there is a place for rapidly-understood graphs, it is too limiting to make speed a requirement in science and technology, where the use of graphs ranges from detailed in-depth data analysis to quick presentation. [...] The important criterion for a graph is not simply how fast we can see a result; rather it is whether through the use of the graph we can see something that would have been harder to see otherwise or that could not have been seen at all.

William Cleveland, The Elements of Graphing Data, Chapter 2

Recall: exploratory vs. explanatory analysis, sometimes audience can explore too

#### Recall Minard's plot of French army losses

#### Easy to see big picture but also many minute details



https://commons.wikimedia.org/wiki/File:Minard.png

#### Tables vs. graphs

When is it good to include a table instead of / in addition to a graph?



#### Tables vs. graphs

Advantages of tables:

- Very few numbers typically better given directly than in a graph
- In a long table, each reader can **find items** of personal interest (e.g. results of a sport competition, statistics for all countries)
- A table gives **exact values**
- Readers can **re-analyze** the same data (table preferably machine-readable)
- Numbers at very **different scales** are sometimes difficult to display even with log axes

See also

https://www.storytellingwithdata.com/blog/2011/11/visual-battle-table-vs-graph

#### Examples of bad graphs and their improvements

- <u>http://www.perceptualedge.com/examples.php</u>
- https://eagereyes.org/pie-charts
- <u>https://viz.wtf/</u>

## Infographics

#### Some examples of infographics

Several examples that are close to data visualization:

- Income by religious group in US (image, website)
- Deadliest pandemics (<u>website</u>)
- War casualties (<u>website</u>)
- Game of Thrones relationships (website)
- Emergency medical services in Slovakia 2019 (website)

Some explain other types of information:

• Sitting and standing is bad (<u>website</u>)

#### Data visualization (DV) vs infographics (IG)

- Target audience: IG general public, DV often experts
- **Storytelling:** often in IG, can be created from multiple DV
- **Design and aesthetics:** more elaborate in IG, includes graphics elements and clipart (considered chart junk in DV)
- **Process of creation:** many simple tools for DV, IG time consuming, often created by collaboration of data analysis, domain experts and graphic designers

https://www.statsilk.com/blog/real-difference-between-infographics-and-data-visual izations
# 1 Lecture 11: Infographics, interactivity, other tools, specialized plots

# Data Visualization $\,\cdot\,$ 1-DAV-105

Lecture by Broňa Brejová

Acknowledgement: some materials inspired by lectures from Martina Bátorová in 2021

#### 1.0.1 Several examples of infographics

Several examples that are close to data visualization:

- Income by religious group in US (image, website)
- Deadliest pandemics (website)
- War casualties (website)
- Game of Thrones relationships (website)
- Emergency medical services in Slovakia 2019 (website)

Some explain other types of information:

• Sitting and standing is bad (website)

## 1.1 Data visualization (DV) vs infographics (IG)

- Target audience: IG general public, DV often experts
- Storytelling: often in IG, can be created from multiple DV
- **Design and aesthetics:** more elaborate in IG, includes graphics elements and clipart (considered chart junk in DV)
- **Process of creation:** many simple tools for DV, IG time consuming, often created by collaboration of data analysis, domain experts and graphic designers

See also https://www.statsilk.com/blog/real-difference-between-infographics-and-data-visualizations

# 1.2 Interactivity

Interactive visualization engages audience, allows them to explore data in depth and according to their interest.

#### 1.2.1 Examples

- PhD gender gap (website)
- Making it big (website)
- US cities with the same name (website)

#### 1.2.2 Techniques in interactivity visualization

Similar to decisions made in designing a static plot:

- Selecting variables (x, y, color, ...)
- Filtering data (selecting table rows)
- Highlighting points or groups

- Aggregating (display countries or region summaries)
- Zooming / panning
- Rescaling (log-scale) / reexpressing (e.g. % instead of counts)
- Sorting (e.g. bars in bargraphs)
- Displaying details (tooltips)
- Annotating
- Bookmarking

(Stephen Few)

## 1.2.3 Dashboard

- A display consisting of multiple plots, summarizing current state of important indicators (e.g. of a business, pandemics, ...)
- Inspired by dashboards in cars and planes
- Often interactive, but main features in default view

Two SARS-CoV-2 examples:

- WHO
- Nextstrain
  - many options: selecting color, filtering, highlighting, aggregating, zooming and panning (maps and tree), rescaling (time vs divergence), tooltips, bookmarking

## 1.2.4 Interactivity in Plotly Express

All Plotly plots by default have some interactivity:

- Filtering groups
- Zooming / panning
- Details
- Spike lines

Example 1: Country indicators from World Bank, https://databank.worldbank.org/home under CC BY 4.0 license.

Regions can be switched on and off.

Example 2: Life expectancy data provided free by the Gapminder foundation under the CC-BY license.

Compare data along the x coordinate.

```
[2]: url="http://compbio.fmph.uniba.sk/vyuka/viz/images/3/33/
    Gapminder_life_expectancy_years.csv"
    orig_expectancy = pd.read_csv(url)
    expectancy = pd.melt(orig_expectancy, id_vars=["country"], var_name="year")
    expectancy['year'] = expectancy['year'].astype(int)
```

```
[3]: selected = expectancy.query("country=='Slovak Republic' or country=='France'")
fig=px.line(
    selected, x="year", y="value", color="country",
    title="Life expectancy", width=800, height=500
    )
fig.update_layout(hovermode="x unified")
```

#### 1.2.5 More interaction with Dash by Plotly

- Dash library by Plotly allows adding control elements (selectors, sliders, buttons, ...)
- We have seen an example in L01

#### 1.3 Other visualization tools

Non-programmers typically create plots in spreadsheets:

- Excel (examples)
- Google sheets (examples)

System R: programming language for statistical computing

- Together with Python, very popular in data science
- Built-in plots
- Also other libraries, notably ggplot2 based on system called Grammar of Graphics (cheat-sheet)

Javascript

- Programming language popular in web programming
- Google charts for Javascript (examples)
- D3.js library (Data-Driven Documents)

Tableau

- Advanced visualization tools, commercial
- Gallery

Microsoft Power BI

- Interactive data visualization software with a focus on business intelligence
- An example

# 1.4 Several specialized visualization types

## 1.4.1 UML diagrams in computer science

• Display relationships between different classes or other components and aspects of software

https://commons.wikimedia.org/wiki/File:UML\_diagrams\_overview.svg Derfel73; Pmerson

## 1.4.2 Waterfall chart

- Used in bussiness analysis: financial, inventory, human resources etc.
- Displays effects decreasing or increasing a given value
- The first and last columns are bars displaying starting and final value
- Intermediate columns float, displaying changes from previous total
- Description

https://commons.wikimedia.org/wiki/File:Waterfallchart\_ex2.jpg FusionCharts Blog, CC BY-SA 4.0

# 1.4.3 Funnel charts

- Display losses within a business process, e.g from website visit to actual purchase
- Horizontal bar chart with centered bars
- Beware: different from funnel plot in medical meta-analyses of multiple publications

```
[4]: # example from https://plotly.com/python/funnel-charts/
data = dict(
    number=[39, 27.4, 20.6, 11, 2],
    stage=["Website visit", "Downloads", "Potential customers", "Requested
    oprice", "invoice sent"])
fig = px.funnel(data, x='number', y='stage')
fig.show()
```

# 1.4.4 Gantt chart

- Used in management to display project schedule with different tasks and their planned duration
- Can also display current status of tasks and their dependencies

https://commons.wikimedia.org/wiki/File:GanttChartAnatomy.svg

#### 1.4.5 Candlestick chart

- Similar to boxplot, used in financial data, e.g. stocks, currency exchange rates
- Line: minimum and maximum, box: opening and close, color: increase or decrease

https://commons.wikimedia.org/wiki/File:Candlestick\_Chart\_in\_MetaTrader\_5.png